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Abstract—The ability to dynamically adapt to resource varia-
tions is critical for modern-day mission-critical systems that oper-
ate in ever-changing resource environments. Test-based Software
Modification (TBSM) is a recently proposed technique to build
Resource Adaptive Software (RAS) that relies on existing test
infrastructure, test labeling, and program modifications. TBSM
is simple and applicable, but an inefficient technique; the primary
reason for inefficiency is the sheer size of the search space.

In this paper, we propose AdFL, a repurposing of Fault
Localization (FL) that can shrink (and prioritize) the search space
for TBSM more effectively than previously proposed heuristics.
We present complete case studies and an empirical analysis
of a set of open source projects as evidence that AdFL can
significantly reduce the search space in TBSM. We show how to
combine AdFL with previous heuristics for TBSM, and propose
an incremental, best-effort variant of TBSM that uses AdFL to
prioritize the search.

I. INTRODUCTION

Modern day software systems have varying, complex re-
source needs that change frequently based on environmental
variations, technology, and integrating system components.
To ensure survivability in changing resource contexts, these
systems must self-adapt based on changing resource needs and
availability [1]. The inability of software systems to handle
varying resource needs can lead to inferior and potentially
vulnerable software. A self-adaptive software (SAS) changes
its behavior in response to changes in operating conditions.
A resource-adaptive software (RAS) is a SAS where the
reason for adaptation is unavailability or variability of one or
more resources. Researchers are devoting significant efforts
to devise methods to effectively construct resource-adaptive
software systems, and DARPA has launched BRASS (Build-
ing Resource Adaptive Software Systems), a major initiative
devoted to the problem [2].

Researchers have proposed numerous tools, techniques, and
approaches to build SAS that rely on modeling techniques,
architectural specifications, domain-specific languages, and
formal methods [3], [4]. While numerous tools exist, these
tools are mostly domain or application specific. Further, they
are seldom reusable nor sufficiently applicable to different
systems [5], [6]. These tools usually require developers to learn
modeling techniques, formal specification methods, domain-
specific languages, etc., and map their applications accord-
ingly [7], [8], [9], which presents a high barrier to entry.
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While working with software developers building real-
world RAS for a mission-critical software system, the Tactical
Situational Awareness System (TSAS), Christi et al. proposed
a conceptually simple but highly applicable technique called
Test-Based Software Modification (TBSM) [10], inspired by
delta-debugging variations [11], [12]. TBSM is similar to
Automatic Program Repair (APR) for patch generation and
relies on existing test infrastructure, combined with automatic
program modifications, to build adaptations [13]. The tech-
nique relies on developers’ understanding of tests and how
tests relate to features and resource usage. Developers encode
this information by merely labeling the tests related to func-
tionalities. As developers do not need to learn any modeling
or architectural technique, any specification languages, formal
methods etc. the entry barrier is low to developers.

To simplify presentation and analysis, we assume in the
remainder of this paper that a single resource change requires
adaptation. Figure 1 is a simplified version of a figure in the
original TBSM paper [10], explaining the basic idea of the
approach. Tests in the labeled set mark tests that encode the
adaptation objective: they test a functionality that is to be
removed. The unlabeled tests define functionality the adapted
system must retain. The reduction tool hddRASS takes as
its input the original program and labeled and unlabeled test
suites, and produces a “minimized” program that passes all
the unlabeled tests, but does not have to pass the labeled
tests. Ideally, this is a program with the targeted functionality
removed. The operation of hddRASS is conceptually simple:
it repeatedly removes parts of the code, and checks if the
modified program still passes all unlabeled tests. If so, this
becomes the new baseline program, and hddRASS attempts
to minimize it, until no changes produce a program that
still passes all required tests. If the labeled tests define a
functionality that consumes resources, the modified program
will consume fewer resources.

The major drawback of TBSM is efficiency — it is a slow
technique. Since building resource adaptations with TBSM is
similar to patch generation with APR, it has similar reasons
for inefficiency — (1) an extremely large search space, (2)
potentially long running time for test suites, and (3) ineffi-
ciency due to the underlying algorithm, a modified form of
Hierarchical Delta Debugging (HDD) [14], which has worst-
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Fig. 1: TBSM approach to build adaptation for single adaptation objective scenario.

case complexity of O(n3). Of these problems, the sheer
size of the search space is perhaps the worst (and drives
HDD complexity): the search space in TBSM is the set of
possible modifications to a whole program, and since it is a
generate-and-validate technique, in principle TBSM may have
to run the entire unlabeled test suite for every step of the
search. We proposed three heuristics [15] to reduce the search
space, of which one, called H3 or CBLS (Coverage-Based
Likely Statements) relies on statement coverage information
of labeled and unlabeled tests. This heuristic performed best
in terms of both accuracy and reduction in search space size,
often by a large margin. We therefore use CBLS as the starting
point for our exploration of improving the efficiency of TBSM.
Even with CBLS, computing an adaptation still required over
an hour in a realistic case study.

While proposing Fault Localization (FL) as an early step of
APR to tackle the search space problem, Le Goues et al. noted
it as a significant repurposing of FL — the original purpose
mainly being automated debugging [16]. The presence of the
fault and the availability of passing and failing tests makes FL
a natural choice for APR. Unfortunately, with TBSM, neither
is present: TBSM aims to generate a minimal program to
fit a test suite, not cause failing tests in a suite to pass. In
this paper, we argue that the presence of labeled tests can
be used to overcome this limitation. We propose changes in
the definition of Fault Localization, primarily in the usage of
passing and failing tests, to repurpose it for TBSM. We call
this tweaked FL Adaptation FL, or AdFL. We demonstrate
that AdFL can successfully predict which statements will be
modified (removed) during adaptation more effectively than
CBLS. Moreover, we show how to modify the TBSM process
to incorporate the information provided by AdFL to produce
accurate adaptations much more quickly. The contributions of
this paper are: (1) We repurpose fault localization to tackle the
search space problem for resource adaptations via Test-based
Software Modification. This is accomplished by modifying the
definition of FL. (2) We evaluate five different FL techniques

repurposed for AdFL. (3) We conduct an empirical analysis
to study the usefulness of AdFL on 800 data points across
40 subjects of 10 open source Java projects, using two test
labeling schemes. (4) Using two real-world adaptation scenar-
ios, we demonstrate that AdFL can predict modifications for
real systems. (5) We consider the stopping rule problem for
TBSM, and propose some heuristics, as well as an incremental
version of TBSM.

II. RELATED WORK
A. Self Adaptive Software Systems

Self-adaptive systems are well described in two roadmaps
(Cheng et al. [17] and Delemos et al. [18]). Salehie and
Tahvildari provide a summary of much early work in SAS [3],
and describe some of the notable techniques proposed to build
SAS. Krupitzer et al. summarize different engineering ap-
proaches to build SAS [4]. The approaches presented include
model-based approaches, architectural-based approaches, con-
trol theory-based approaches, and learning-based approaches.
The above-mentioned techniques, tools, and approaches target
specific scenarios or applications with limited applicability
and little reusability. This was noted by Garlan et al. while
developing the RAINBOW framework [9], an early attempt to
solve the reusability issue, and relies on architectural modeling
combined with control and utility theory.

Elkhodary et al. argue that using feature or functionality
as the core building block in SAS construction can alleviate
some of the key challenges by abstracting underlying complex-
ities [19], and develop a feature-oriented SAS framework [20].
Fredericks et al. suggest elevating tests to the status of first
class citizens in SAS specification and verification. They
propose MAPE-T, a test aware feedback loop where T stands
for tests [21]. Self-adaptive software requirement specification
is an open research question. Formal specifications, mod-
eling languages, and domain-specific languages have been
proposed [22], [23], [24]. Whittle et al. developed a DSL called
RELAX that provides expressions to capture uncertainty in



requirements [24]. Our work, in contrast, focuses on improving
the performance of a recently proposed technique, TBSM,
that avoids the need for additional specification, modeling, or
architectural information.

Casanova et al. discuss the issues and limitations of utiliz-
ing FL to diagnose unobserved components in self-adaptive
systems where the information collected for diagnostics may
be insufficient or incomplete [25].

B. Fault Localization and Program Repair

Fault Localization ranks statements by the likelihood of the
statement being faulty. Jones et al. used spectra of passing
and failing tests to define the Tarantula technique [26]. Fol-
lowing that seminal work, researchers have proposed many
(Spectrum-Based) FL techniques. Wong et al. summarize in
detail recent advances in FL: according to Wong et al., Taran-
tula, Ochiai, Barinel, Op2, and DStar are the most studied FL
techniques [27].

The recent surge of interest in Automated Program Repair
(APR) largely began with GenProg, which modifies the Ab-
stract Syntax Tree (AST) of a program until all tests in a suite
pass and the fault is (presumably) fixed [13]. Le Goues et al.
subsequently identified multiple major issues with APR, with
a key issue being the search space problem [16], and argued
that it is sufficient to modify only likely faulty statements. They
mentioned FL as an imperfect, but best-available technique
for the purpose. Further research in APR frequently uses
FL as the first step of APR in order to tackle the search
space problem [28], [29], [30], [31]. While evaluating different
size search spaces, Long and Rinard noted that a small fault
space might result in missed faulty statements while a larger
fault space results in overfitting, making selecting the ideal
fault space a difficult problem [32]. In their evaluation of FL
techniques using APR, Qi et al. raised concerns about the
usefulness of FL as an early step of APR [33]. Rather than
using FL to improve APR, we modify FL and re-purpose it
to the needs of TBSM.

III. ADAPTATION FL

Fault Localization (FL) is a natural fit for Automatic Pro-
gram Repair (APR) because both methods assume (1) there
is a fault, identified by at least one failing test and (2) there
are both passing and failing tests to focus attention on the
faulty aspects of a system. Both are missing when building
adaptations using TBSM: the original program is assumed to
pass all labeled and unlabeled tests, and a proposed adaptation
step may not pass any tests. In this section, we present core
concepts behind TBSM, the process of building an adaptation,
and the use of labeled and unlabeled tests in the process.
In doing so, we will construct a mapping between the core
components of FL (fault, passing tests, failing tests) and
core components of TBSM (adaptation, labeled tests, and
unlabeled tests).

We define minimization as the process of applying hd-
dRASS/TBSM to reduce a program’s size. The modified
program produced by applying TBSM is called the adaptation.

The set of program statements modified (usually removed) by
applying TBSM is called the modification; the modification
is the diff between the original program and the adaptation.
Tests that are marked as pertaining to a feature to be removed
from the program are called labeled tests. Labeled tests are
also known as removed tests, as the TBSM process involves
removing them from the test suite so the program is no longer
required to pass those tests. Tests that are not labeled tests
are called unlabeled or retained tests. Adaptation via TBSM
guarantees that the adaptation passes all unlabeled tests.

At a high level of abstraction both APR and TBSM modify
a program until a certain set of tests passes. APR starts with
a program that does not pass all tests, and aims to modify
it so that it passes all tests; TBSM starts with a program that
does pass all tests, and aims to modify it until it can no longer
be modified and still pass all unlabeled tests. There are other
differences — e.g. in APR we expect repairs to be small,
involving changes to only a few lines of code, while in TBSM
changes may be very large, depending on the functionality in
question — but this is the essential difference. Our problem,
then, is to map FL for APR to the different setting of TBSM.

A. Mapping FL to TBSM

1) Faults and Modifications: The underlying idea of
spectrum-based FL is to identify code that is likely to be faulty;
however, another way to think about this idea is that FL. aims
to identify code that is part of the fix to a fault — almost by
definition, faulty code is code that needs to be changed.

The “faulty code” in TBSM is code that needs to be modified
or removed for an adaptation: the difference between the orig-
inal program and the adaptation. Such code is even, in fact,
“faulty” when seen from a larger perspective. The purpose of
resource adaptations is to avoid faults (either in correctness or
performance) that occur in low-resource settings. We may not
have any tests that represent such a scenario, but nonetheless
we can easily conceive that code that should be modified in
TBSM is the code that is involved in some resource-based
fault scenario. E.g., if a program crashes because it allocates
too much memory in a low-memory environment, we can say
that the code that is 1) not essential to the functioning of
the system and 2) allocates memory is all faulty. TBSM (and
other resource adaptation) can be seen as APR for such faults.
However, there remains a very significant difference between
the techniques: in APR there is at least one test case that fails
due to the fault being repaired. TBSM instead begins with a
functionality to remove, since adaptation is often a pre-emptive
effort rather than a response to a particular concrete failure.
APR does not address purely “hypothetical” bugs, obviously,
while minimization, in contrast, operates without access to a
concrete failure scenario.

2) Failing Tests and Labeled Tests: FL for APR relies on
the existence of at least one failing test, and identifies code
more associated with failing than passing tests. In TBSM, we
do not have failing tests. However, we do have labeled tests,
and these can serve the same purpose. Recall that our failures,
while unavailable, are due to resource uses of the functionality



to be removed. This means that code more associated with the
removed functionality is the code of potential interest for our
repair. Not all code in labeled tests is resource-using, or related
to removed functionality, but this is exactly the situation in FL
in general: most code executed by failing tests is not faulty;
the problem is to identify code that is somehow (causally,
statistically, etc.) more related to failing than passing tests, and
thus highly suspicious. Given this understanding, it is clear that
the “failing tests” in FL for TBSM are the labeled tests, the
tests that will be allowed to fail in the adaptation. Note that we
are using tests that are not executed at all in the minimization
process to approximate the goal of that process.

3) Passing Tests and Unlabeled Tests: Given the above
mappings, it should be clear that unlabeled tests, the tests
the adaptation must still pass, correspond to the passing tests
in FL for APR. These tests serve as the “background” for the
“figure” of the labeled tests.

4) Putting it all Together: FL for TBSM: To perform FL
for TBSM, Adaptation FL (AdFL), then, we apply any fault
localization algorithm, but replace failing tests with the labeled
tests and passing tests with unlabeled tests.

To make the mapping here concrete, consider one of our
case studies in IV-B, adapting the NetBeans IDE by removing
undo/redo functionality. The labeled tests for the functionality
do not fail, but they all (1) test an undo and/or redo action
and (2) allocate memory for an undo buffer. The unlabeled
tests never test undo/redo actions, but do allocate memory for
the undo buffer in many cases. The strong association of the
“fault” (undoing/redoing) with the labeled tests should still
make effective FL algorithms label code that implements undo
and redo as suspicious.

5) The Need for a Stopping Rule: CBLS has one obvious
advantage over FL. CBLS provides a set of statements, not
a ranking. In CBLS it is clear how the search space is
reduced: only statements in the CBLS set are considered
for modification. AdFL provides a ranking of statements.
Having a ranking is clearly useful in TBSM, providing an
ordering attempting to modify/remove statements, and making
the program smaller much more quickly, but it does not, on
its own, reduce the search space . To reduce the search space,
we also need a stopping criteria. Constructing such a criteria,
however, is not a simple matter, and previous work in FL
for APR does not, in a sense, need such a criteria: when the
modified program passes all tests, APR can stop. The only use
for a stopping criteria is to abandon the search and consider
the program unrepairable. In TBSM, however, we do not have
such a convenient way to detect when we are done.

As it turns out, one (weak) stopping criteria requires no
empirical data to justify. Statements not in CBLS are, by
definition, never covered by any labeled test. This has two
consequences. First, for any widely used SBFL approach
we are aware of, such statements will have a suspicousness
score of 0.0, and thus rank at the bottom of any ranking of
statements in AdFL. Second, intuitively, it seems absurd to
consider a statement not covered by any test “defining the
functionality to be sacrificed” as a candidate for modification.

Such statements are clearly, if our tests are any good, not
part of the functionality we are adapting. Therefore, as a
simple, default, stopping criteria for using AdFL in TBSM,
we ignore all statements not in CBLS, as these statements will
always have a suspicousness of 0.0. In fact, when statements
are both covered by unlabeled tests (so presumably part
of non-sacrificed functionality) and not covered by labeled
tests, it seems dangerous to remove them. We therefore call
AdFL using CBLS to limit the space Guarded AdFL (G-
AdFL) because it guards against this possibility. This stopping
criteria also points out an interesting corner case. CBLS
includes “dead code” statements not executed by any labeled
or unlabeled test. For many FL formulas (e.g., Tarantula)
this results in an undefined suspiciousness. We assign such
code a suspciousness of T, since we know hddRASS without
heuristic guidance will always remove such statements.

IV. EXPERIMENTS

Having defined a procedure for Adaptation FL, we need to
determine if the proposed equivalences are useful for building
adaptations using TBSM. We demonstrate the utility of AdFL
using two real-world single adaptation objective scenarios,
building class-level adaptations in a controlled setting. We
also show that AdFL performs well for a large set of syn-
thetic adaptation problems using open source subjects used in
previous evaluations of TBSM improvements [15].

In what follows, the baseline is the result of the application
of TBSM in its original form without any heuristic or AdFL
guidance. CBLS refers to application of TBSM where the
search space is first reduced using the H3/CBLS heuristic [15],
and AdFL to application of TBSM where the search space
is first reduced using our new AdFL technique. We use the
five most commonly studied SBFL techniques as our FL
algorithms for AdFL [27]. Hence, for each AdFL, we produce
five separate results.

A. Case Study: TSAS Elevation-API

For TSAS, we present a scenario that the development team
calls the Elevation-API. Here, the variable resource is one of
the libraries and the variation is the availability of a newer
library. Via test labeling, the developer indicated sacrificable-
functionality. With the availability of a newer library, certain
features implemented in TSAS are implemented by the library,
making the TSAS implementation code redundant. The test
labeling here was in terms of features only, not resources. The
sandboxed TSAS server component that we used consists of
70 Java files and is 5571 LOC in size. The developer labeled
5 tests, and the remaining tests were considered unlabeled. We
applied the baseline, CBLS, and AdFL techniques to produce
adaptations. Developers confirmed that all four necessary
modifications were performed correctly by all the techniques,
and that the adapted TSAS versions all worked correctly.

B. Case Study: NetBeans IDE undo-redo

The original work on TBSM discussed a NetBeans IDE
undo-redo adaptation scenario in detail where memory con-



suming functionality was correctly modified to preserve mem-
ory [10]. The module under consideration, the openide . awt
module, consists of 69 Java files with 11,284 LOC and 146
tests. We continue to use the three labeled tests that were
labeled as undo-redo feature related in the original work.
We applied the baseline, CBLS, and AdFL TBSM techniques
to build a memory-adaptive NetBeans IDE. We confirmed,
again, that all the techniques correctly removed all 19 resource
consuming statements (as identified in previous research [15]).
By building the adapted NetBeans IDEs and using them for a
while, we were also able to confirm the normal operation of
NetBeans IDE with undo-redo ability removed.

C. Synthetic Adaptation Analysis

We also compared AdFL to other methods using synthetic
scenarios used in previous TBSM research. This involves
800 adaptations of 40 subjects from 10 open source Java
projects, using two random labeling schemes. Our intent with
the synthetic problems is not to produce practically useful
adaptations, but to produce accurate adaptations for a given
test suite and labeling. We control all variables such as test
suite, labeling scheme, and class subjects. The only variation
allowed is the choice of search space selection technique.

1) Subjects and Tests: Previous work on TBSM noted that
at the class level, adaptations are meaningful and useful [10].
Hence, we focused our study on class-level adaptations. Sub-
ject details are available in our previous paper on TBSM
heuristics [15]. Subjects have an average of 387 LOC (for the
whole class) and 132 statements in non-constructor methods.

Previous work noted that arbitrary subsets of tests are
not interesting (reduction will usually target some actual
functionality), and some tests are not relevant to a particular
class. Based on this, previous work used direct coverage as a
criterion for test selection, and we adopted the same approach.
However, in our case, test selection is not relevant as long as
tests and labels remain the same across techniques. We have 24
tests per subject class, on average. For 32 out of 40 subjects,
statement coverage of the tests is more than 80%, and it is
more than 70% for 37 subjects. We can, therefore, say that
we generally have subjects with good coverage. This is an
important experimental criteria, since TBSM would only be
applied to systems with good test suites.

2) Procedure: For each class, we first randomly labeled
10% of the tests and computed the adaptation. By keeping
the test suite and labeling same but using the search space
defined by the CBLS and AdFL techniques we repeated the
process (details in Section IV-C3). We repeated this procedure
10 times for each class, randomly labeling tests each time,
yielding 10 results per class, generating 400 results for 40
subjects. During each run, if the labeled tests overlapped with
the unlabeled tests, or concerned only minor functionality,
modifications are minimal, but if a very important test is
labeled the modifications may be significant. Labeling tests
randomly and repeating the process 10 times provide us with
an idea of typical results. Developers label tests based on some
feature the test targets. Such labeling is highly context-specific,

and lacking in our open source projects’ test suites. Because
we are using random labels, rather than developer-provided
labels, we lack a solid basis for guessing the size of a typical
set of labeled tests representing a feature. Hence, we repeated
the same procedure, but with 20% of the tests labeled, to
produce another 400 adaptations. For each of the 800 data
points, we have 3 results: baseline, CBLS, and AdFL. Each
AdFL result can be broken down into 5 separate results for
the different SBFL techniques.

3) Measurement: TBSM performs adaptations by modify-
ing (in the current implementation of hddRASS, removing)
program statements. The set of program statements that are
considered by TBSM is the search space. For AdFL without
a stopping criteria, the real search space is the same as for
baseline, except with the statements prioritized so that more
likely-removed statements are considered first. However, we
can use the ranking of the worst-ranked modified statement
to see what stopping criteria could have been used while
preserving a “perfect” adaptation. It is important to note in
what follows that we are comparing real search spaces for
baseline and CBLS with a theoretically ideal search space for
an AdFL with a perfect cutoff/stopping rule. This ideal search
space will inform our effort to devise concrete methods for
using AdFL to improve the efficiency of TBSM.

For baseline, the search space is the whole program. For
CBLS, the search space is statements in the CBLS set. For
AdFL’s theoretical ideal search space, we use the EXAM
SCORE, the most common measure used to compare FL
techniques [34]. We apply AdFL to all the program statements
and sort them by ranking. Then we look for the modified
statement with the worst ranking. If the modified statement
with the worst ranking is tied with other statements, we
resolve the tie randomly. For AdFL, the ‘“search space” is
then all the statements up to the last statement that was
modified. We have five distinct AdFL results based on the
SBFL techniques: Tarantula, Ochiai, Barinel, Op2, and Dstar;
the most widely studied SBFL formula [27]. The formula can
be found in Pearson et al. [34]. For the remainder of the paper,
% improvement of technique B over technique A is measured
as %improvement = ((|B| — |A])/|A|) * 100. With a fixed
cutoff rule (CBLS or a percent of highest ranked statements for
AdFL) we measure % accuracy as % of statements modified
out of statements modified by the baseline technique that
searches the entire space of modifications.

V. EVALUATION

We focused on three key research questions: RQ1: Is there
a best formula for AdFL, among the five SBFL techniques
evaluated? RQ2: How does AdFL compare to the baseline
and CBLS for synthetic adaptations? RQ3: Most importantly,
is AdFL an effective technique for real-world adaptations?

A. RQI: Comparison of SBFL techniques for AdFL

To compare each of the five techniques for AdFL, we
used the same comparison methodology used by Pearson et
al. for evaluating and improving fault localization techniques



TABLE I: MEAN/MEDIAN are for EXAM SCORE.
FLT=Fault Localization Technique. #Worse presents the num-
ber of techniques worse by tournament ranking. FLT Rank is
mean across 800 data points.

FLT MEAN | MEDIAN | #Worse | FLT Rank
Tarantula 0.490 0.521 0 1.966
Ochiai 0.511 0.540 0 2.095
op2 0.509 0.534 0 2.033
Barinel 0.505 0.541 0 2.053
DStar 0.513 0.537 0 2.13

TABLE II: MEAN/MEDIAN represents mean/median % im-
provement while choosing AdFL vs. baseline. AvgAdFL
and WorstAdFL have 100% accuracy. G-AvgAdFL and G-
WorstAdFL have mean accuracy of 79% (identical to CBLS).

Method MEAN | MEDIAN p-value | std dev | MIN | MAX
AvgAdFL 47.06 43.71 <0.005 29.31 0.34 | 97.01
WorstAdFL 41.40 37.70 | <0.005 31.81 022 | 9691
AvgG-AdFL 60.88 65.32 | <0.005 23.85 493 | 97.28
WorstG-AdFL 42.71 41.30 | <0.005 29.28 | 0.00 | 97.14

(FLTs) [34], with three evaluation metrics: (1) mean EXAM
SCORE, (2) tournament ranking: pairwise comparison to de-
termine if one FLT is statistically superior to another, and (3)
mean FLT rank: using each data point to rank SBFL techniques
from 1 to 5 and then averaging the rank across 800 data points

For tournament ranking, we used a paired t-test. Table 1
shows results. The #Worse columns shows that, for all 10
pairings, no technique was statistically significantly better than
the other. MEAN, MEDIAN and FLT Rank values are also
very close for all techniques. Hence, we can say that no clear
winner was found among the five SBFL techniques. Therefore,
in the following results, we report both average FLT result
(AvgAdFL) and worst FLT result (WorstAdFL).

B. RQ2: AdFL vs. Baseline and CBLS

Table II compares AdFL, with and without the guard
(pruning statements by CBLS) to baseline. If we used an ideal
cutoff (stopping the search after the last modified statement),
how many percent fewer statements would we have to examine
if we used AdFL (or G-AdFL) instead of the full program?
The results show that, with an ideal cutoff, (G-)AdFL performs
considerably better than baseline, often removing nearly half
the statements proposed from consideration. Guarded AdFL
improves on baseline by a larger margin, at the cost of some
accuracy compared to non-guarded AdFL. Guarded AdFL
is, of course, exactly as accurate as CBLS, since CBLS
provides the cutoff for AdFL.We also conducted paired t-
tests, comparing AvgAdFL with CBLS and WorstAdFL with
CBLS. For AvgAdFL vs. CBLS, the mean difference is 15.2
(p < 0.005) with 95% confidence interval (12.68, 17.77).
Also, when comparing AvgAdFL with CBLS, the effect size is
large (Cohen’s d > 0.5). For WorstAdFL vs. CBLS, the mean
difference is 9.48 (p < 0.005) with 95% confidence interval
(6.87,12.26). From all the results, we can say that AdFL per-
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forms better than CBLS in search space reduction. Given that
AdFL is better than CBLS, we also want to know the average
improvement by choosing AdFL over CBLS. For that, we used
AvgAdFL and compared it directly with CBLS. We define the
% improvement ((|AvgAdFL| — |CBLS|)/|CBLS]|) * 100.
where |[CBLS)| is the size of the CBLS set and |AvgAdF L
is the mean EXAM SCORE across all 5 techniques. A one-
sample t-test on % improvement shows mean improvement
of 23.20% with p < 0.005 and 95% confidence interval of
(19.71, 26.69).

1) Using Real Cutoffs: Results up to this point rely on using
an EXAM SCORE provided ideal cutoff that is, in practice,
not possible for developers. However, the results also show
that the ranking position of the last removed statement is such
that we could, almost always, prune much more of the search
space than just using CBLS. In practice, developers using an
AdFL technique to prune the search space must pick some
cutoff, and ignore statements below that suspicousness. Given
a cutoff, note that the effectiveness of search space pruning
is fixed — if a developer decides to only consider the top
10% of AdFL-ranked statements for removal, the reduction
compared to baseline is obviously 90%. What can vary is the
accuracy of the produced adaptation. Real cutoffs are highly
context-specific, trading more time required for adaptation
off for less likelyhood of not removing some statements. We
therefore used 10%, 20%, 30%, 40% and 50% cutoff values,
with 10% cutoff meaning that TBSM only considers the 10%
top ranked statements by AdFL. Figure 2 shows how accuracy
varies with these cutoffs for our 800 synthetic adaptations. In
non-guarded AdFL, we directly apply the cutoff; in G-AdFl
we may end up with a smaller search space than the cutoff,
if CBLS itself prunes the space more than the cutoff would.
Even with synthetic test suites with non-meaningful labels (the



TABLE III: Percent improvements over baseline. AdFL vs. CBLS shows the % improvement of average AdFL over CBLS.

Application CBLS | Tarantula | Ochiai Op2 | Barinel | DStar | AvgAdFL | WorstAdFL | AdFL vs. CBLS
Elevation-API 55.17 91.72 93.79 | 90.34 91.72 | 92.41 92 90.34 66.75
NetBeans IDE undo-redo | 90.71 92.28 93.42 96 93.85 | 94.42 94 92.28 3.62

equivalent of a fault with no reliable location), for non-guarded
AdFL 45% of data points have 100% accuracy at a 50% cutoff.

C. RQ3: AdFL in real-world adaptation scenarios

How does AdFL perform in the real world? Table III shows
EXAM SCORE derived ideal cutoffs for two actual adaptation
scenarios with meaningful test labelings. For the industrial
scenario from the TSAS system, CBLS is only able to prune
55% of the program statements, but using AdFL and a cutoff
of 10% would produce a 100% accurate result, even using
the very worst FLT. For the NetBeans IDE, CBLS performs
quite well, but even the worst FLT still improves on it by a
few percent. For the elevation-API adaptation, baseline TBSM
without heuristic guidance requires 460 minutes. Using CBLS,
this can be reduced to 118 minutes, and using AdFL with Op2
(the worst performing FLT) and a 10% cutoff only requires
49 minutes. For the NetBeans IDE adaptation, baseline TBSM
without heuristic guidance requires 175 minutes. Using CBLS,
this can be reduced to 61 minutes, and using AdFL with Op2
and a 10% cutoff only requires 57 minutes, slight improve-
ment. Developers do not know in advance how well CBLS
will perform, but in both scenarios here, they can safely use
AdFL, which has no additional computation cost, and a 10%
cutoff, without loss of accuracy.

VI. THREATS TO VALIDITY

We used open source Java projects and the NetBeans IDE
in order to compare with previous work on TBSM. The only
proprietary program used in our analysis is TSAS. For TSAS,
tests were labeled by developers, again avoiding any bias on
our part. We used the standard EXAM SCORE measure to
study the effectiveness of SPFL techniques.

All the projects used in the synthetic study as well as case
study scenarios are Java projects. In order to verify generality,
we need an hddRASS-like tool that can modify/reduce pro-
grams written in other programming languages. The primary
threat to Java generalization is that while we suspect our
synthetic results are typical of similar artificial adaptation
problems, the most meaningful data is our two realistic case
studies. Our non-proprietary data and results are available
online at https://github.com/amchristi/AdFL.

VII. DISCUSSION: BEST-EFFORT INCREMENTAL TBSM

The primary question raised by our experiments is how
AdFLizer decides which statements are ‘“unlikely” targets
for modification: does the developer provide a cutoff? Our
synthetic results suggest that developers could provide a
50% cutoff, and likely see no significant loss in accuracy.
This would be useful, and is better than CBLS on synthetic

TABLE IV: Different TBSM strategies with corresponding
time (in minutes) needed to build correct adaptations.

Application baseline | CBLS | AdFL-10% cutoff | AdFL-inc
Elevation-API 460 118 49 35
NetBeans IDE undo-redo 175 61 57 20

adaptation problems, but is far from ideal. Our results on real-
world adaptations suggest that a 10% cutoff might be safe
for actual adaptation based on meaningful test labels, even if
the developer picks a “bad” SBFL technique. However, we
only have two real-world scenarios, so we hesitate to claim
that 10% is really safe for most adaptations. What cutoff
should we pick if only 20 minutes are available to achieve
the resource adaptations? There is a way to sidestep the entire
issue: provide AdFLizer directly with a time budget, rather
than a fixed percent cutoff.

The problem of determining a stopping criteria for TBSM
is more acute than in APR: APR can stop whenever it
has a version of a program that passes all tests. However,
this distinction can be considered in a different light, to
the advantage of TBSM. Namely, APR is useless until it
produces a program that passes all tests, while TBSM is useful
so long as it has removed some resource-using statements,
and at least partly disabled problematic functionality, while
preserving a useable system. If we assume that passing all
unlabeled tests is usually an indicator a system is useable, even
if not optimally adapted, then we can see that TBSM could
be used as an incremental algorithm. In order to demonstrate
the effectiveness of best-effort incremental TBSM, we used
AdFL-driven TBSM to produce resource adaptations for both
of the case study scenarios. We started with a computation
budget of 5 minutes and continued to increment it by 5
minutes until all resource consuming statements were correctly
modified. Table IV represents the time budget required to build
a correctly adapted version for different TBSM strategies:
baseline, CBLS, AdFL with low cutoff, and AdFL with fixed
computation budget, approximating incremental TBSM. The
time budgets required to compute correct adaptations for the
Elevation API scenario and NetBeans IDE are 35 minutes and
20 minutes respectively, saving almost 30% and over 60% of
the cost for even a low cutoff. Because incremental results
always pass all retained tests, the approach is both safe and
effective, even when the time budget available is very limited.

VIII. CONCLUSIONS AND FUTURE WORK

Resource-adaptation is crucial for the survivability of mod-
ern, mission-critical software systems. TBSM is a technique
for building resource adaptations that relies on fest labeling


https://github.com/amchristi/AdFL

and program modification, and has been applied by the de-
velopers of TSAS in real world adaptation problems. This
paper presents a novel application of Fault Localization (FL)
techniques to improve the efficiency of TBSM, inspired by

the

application of FL to Automated Program Repair (APR)

and Spectrum-based Feature Comprehension. We show that
using FL in real world scenarios would allow up to 90% of
the search space to be pruned in TBSM. Furthermore, using
FL in TBSM makes it possible to reconsider TBSM as an
incremental best-effort adaptation method.
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