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Abstract—Fault masking happens when the effect of one fault
serves to mask that of another fault for particular test inputs. The
coupling effect is relied upon by testing practitioners to ensure
that fault masking is rare. It states that complex faults are
coupled to simple faults in such a way that a test data set that
detects all simple faults in a program will detect a high percentage
of the complex faults.

While this effect has been empirically evaluated, our theoret-
ical understanding of the coupling effect is as yet incomplete.
Wah proposed a theory of the coupling effect on finite bijective
(or near bijective) functions with the same domain and co-domain
and assuming a uniform distribution for candidate functions. This
model, however, was criticized as being too simple to model real
systems, as it did not account for differing domain and co-domain
in real programs, or for the syntactic neighborhood.

We propose a new theory of fault coupling for general
functions (with certain constraints). We show that there are two
kinds of fault interactions, of which only the weak interaction
can be modeled by the theory of the coupling effect. The strong
interaction can produce faults that are semantically different
from the original faults. These faults should hence be considered
as independent atomic faults. Our analysis shows that the theory
holds even when the effect of the syntactic neighborhood of
the program is considered. We analyze numerous real-world
programs with real faults to validate our hypothesis.

I. INTRODUCTION

Fault masking occurs when interactions between component
faults in a complex fault result in expected (non-faulty) values
being produced for particular test inputs. This can result in
faults being missed by test cases, and undeserved overconfi-
dence in the reliability of a software system.

The coupling effect [1] hypothesis concerns the semiotics1

of fault masking. It asserts that “complex faults are coupled
to simple faults in such a way that a test data set that detects
all simple faults in a program will detect a high percentage
of the complex faults.” [2], [3], [4].

This is relied upon by software testers to assert that fault
masking is indeed rare. However, our understanding of the
coupling effect is woefully inadequate. We do not know when
(and how often) fault coupling can happen, whether multiple
faults will always result in fault coupling, or the effect of
increase in number of faults on the number of faults masked.
Further, the formal statement of the coupling effect itself is
ambiguous and inadequate as it covers only the case where all
simple faults are detected. Even worse, it has no unambiguous
definition of what a simple (or atomic) fault is. We propose a
stronger version of the coupling effect (called the composite
fault hypothesis to avoid confusion):

1The relation between syntax and semantics of faults.

Composite fault hypothesis: Tests detecting a fault in
isolation will (with high probability κ) continue to detect the
fault even when it occurs in combination with other faults.

We investigate our hypothesis theoretically and empirically.
The terms used in this paper are given in Note 1.

A. Theory

Wah et al. [5], [6], [7] investigated the theory of the coupling
effect, which assumes that any software is built by composition
of q independent functions, with a few restrictions:

• Functions have the same domain and range (order n), and
the functions are bijective. The non-bijective functions are
modeled as degenerate functions.

• Separability of faults: A program with two faults can be
split into two independent faulty programs 2.

• Democratic assumption: Any applicable function may be
chosen as the faulty representation with equal probability.

• The number of functions considered, q, is much smaller
than the size of the domain. That is, q � n. Wah suggests
that as q nears n, the coupling effect weakens.

For q functions, the survival ratio of I and II order test
sets are 1

n and 1
n2 . Wah also makes an observation, used as a

heuristic, that the survival ratio of a multi-fault alternate is p+1
n

if there are p fault free functions left over after the last faulty
function. That is, there are 2p−1−1 multi fault alternates with
last faulty function at p, and the expected number of survivors
for q-function composition is:

1

nr

q∑
p=1

(2p−1 − 1)(q − p+ 1)r

for test sets of order r. Wah’s analysis lacks wider applicability
due to these constraints. Real programs vary widely in their
domain and co-domain. Second, the number of mathematical
functions with same domain and co-domain is not identical
to that of programs with same type. Third, the democratic
assumption ignores the impact of syntactical neighborhood.
That is, it is possible that a quick sort implementation can
have a small bug, resulting in an incorrect sort. However, it
is quite improbable that it is replaced by an algorithm for
— say — random shuffle, which has the same domain and
co-domain as that of a sorting function. While syntactical
nearness does not completely capture semantic nearness, it is
closer than assuming any function is a plausible fault for any
other function. Next, the separability of complex faults, as we

2 Wah assumed this to be true for all general functions, but Section III
shows that it is not.



(Semantic) Separability of faults: Two faults present in a
function are said to be separable if and only if the smallest
possible chunk containing both faults can be decomposed into
two functions g and h such that each fault is isolated within
a single function (providing ga and hb as faulty functions),
the behavior of composition h ◦ g equals the behavior of the
original chunk in terms of input and output , and composition
hb ◦ ga equals the behavior of the chunk with both faults.
Simple fault (first order fault): A fault that cannot be lexically
separated into other independent smaller faults.
Complex fault: (or higher order or combined fault) A fault
that can be lexically separated into smaller independent faults.
Constituent fault: A fault that is lexically contained in another.
Atomic fault: A fault that cannot be semantically separated.
Composite fault: A fault that can be semantically separated.
Traditional coupling ratio (C): The ratio between the percent-
age of complex faults detected and the percentage of simple
faults that were detected by a test suite.
Composite coupling ratio (κ): The ratio between the percent-
age of complex faults detected by the same set of test cases
that detected the constituent simple faults, and the percentage
of constituent simple faults detected.
Domain of a function: The set of all values a function can take
as inputs (this is practically the input type of a function).
Co-Domain of a function: The set of all values that a function
can produce when it is provided with a valid input from its
domain (this is practically the output type of a function).
Range of a function: The set of all values in co-domain that
directly maps to a value in the domain.
Syntactic neighborhood: The set of functions that can be
reached from a given function by modifying its syntactical
representation in a given language a given number of times.

Note 1. Terms used in this paper

show in Section III, is valid only in certain cases, and does
not account for recursion and iteration. Finally, Wah’s analysis
suggested that the survival ratio of mutants is dependent on
the domain of the function. We show that the survival ratio
of a mutant is actually dependent on the co-domain of the
function examined, but bounded by domain.

We propose a simpler theory of fault coupling that uses
a similar model to Wah’s, but with relaxed constraints, and
incorporates differing domain and co-domain. We clarify the
semantic separability of complex faults, and show how it
affects the coupling effect. We also show that certain common
classes of complex faults may not be semantically separable.
This provides us with a definition of an atomic fault: a
fault that cannot be semantically separated into simpler faults.
This is important because two faults that may be lexically
separate but inseparable can be expected to produce a different
behavior than either fault considered independently. Further,
we consider the impact of syntactic neighborhood. Using
both case analysis and statistical argument, we show that our
analysis remains valid even when the syntactic neighborhood

is considered.

B. Empirical Validation

Lipton et al. [8], [1], and Offutt [2], [3], observed that the
tests for first order mutants were sufficient to kill up to 99% of
all 2nd order mutants, and 99% of 3rd order mutants sampled.
Further research [9], [10], [11], [12], [13], [14] confirms that
mutants are coupled to real faults.

Offutt suggests [2], [3] that there are two distinct definitions
of coupling involved. The general coupling effect: simple
faults are coupled to more complex faults such that test data
adequate for simple faults will be able to kill a majority of
more complex faults. The mutation coupling effect: test data
adequate for simple first order mutants will be able to detect a
majority of more complex mutants. Previous research validates
mutation coupling effect but not general coupling effect.

Our empirical analysis aims to accomplish the following:
First, we empirically evaluate the composite coupling ratio κ
for numerous real-world projects. This gives us confidence
in the assumptions made in the theoretical analysis, and
serves to validate the composite fault hypothesis. Second, we
empirically evaluate the general coupling effect for faults, and
compute the traditional coupling ratio C. Lastly, as the size
of the faults increase, it is possible that strong interactions
also increase, which can produce semantically different faults.
Hence, it is important to empirically validate both composite
coupling and the general coupling effect for syntactically large
fault clusters.

What is the relation between the composite coupling ratio
κ and the traditional coupling ratio C? We can regard the
composite coupling ratio as a lower limit of the traditional
coupling ratio. As we explain further, the general coupling
ratio does not discount the effect of strong fault interactions,
which can produce complex faults semantically independent
from the constituent faults. Hence, C is not bounded by any
number, and will often be larger than κ, with κ < 1.
Contributions:

• We propose the composite fault hypothesis that resolves
vagueness and ambiguity in the formal statement of the
coupling effect for non-adequate mutation scores.

• Our theoretical analysis results in the composite fault
hypothesis for general functions. We find the composite
coupling ratio to be 1− 1

n , where n is the co-domain.
• We show that our analysis remains valid even when

considering recursion and loops.
• Using 25 projects, we compute the composite coupling

ratio κ to be greater than 0.99, with 95% confidence. This
helps substantiate the impact of composite coupling.

Our full data set is available for replication3.

II. RELATED WORK

Fault masking in digital circuits was studied before it was
studied in software. Dias [15] studies the problem of fault
masking, and derives an algebraic expression that details the

3 http://eecs.osuosl.org/rahul/icst2017/

http://eecs.osuosl.org/rahul/icst2017/


number of faults to be considered for detection of all multiple
faults. Morell [16] provided a theoretical treatment of fault
based testing, and also [17] gave a formal treatment of the
coupling effect. and shows impossibility of a general algorithm
to identify fault coupling. Wah et al. [5], [6], [18], [7] using
a simple model of finite functions (the q-function model,
where q represents the number of functions thus composed)
showed that the survival ratio of first and second order test
sets are respectively 1

n and 1
(n2−n) where n is the order of the

domain [4]. A major finding of Wah is that the coupling effect
weakens as the system size (in terms of number of functions in
an execution path) increases (i.e. q increases), and it becomes
unreliable when the system size nears the domain of functions.
Another important finding was that minimization of test sets
has a detrimental effect. That is, for n faults, one should use n
test cases, with each test case able to detect n−1 faults (rather
than a single fault) to ensure that the test suite minimizes
the risk of missing higher order faults due to fault masking.
Kapoor [19] proved the existence of the coupling effect on
logical faults. Voas et al. [20] and later Woodward et al. [21]
suggested that functions with a high DRR (domain to range
ratio) tend to mask faults. Al-Khanjari et al. [22], found that
in some programs there is a strong relationship between DRD
(Dynamic Range to Domain) ratio and testability.

Androutsopoulos et al. [23] found that one in ten tests
suffered from failed error propagation. Clark et al. [24] found
that likelihood of collisions was strongly correlated with an
information theoretic measure called squeeziness, related to
the amount of information destroyed on function application.

Our research is an extension of the theoretical work of
Wah [6] and Offutt [3], [2]. The major theoretical difference
from Wah [6] is that, given a pair of faulty functions that
compose, we try to find the probability that, for given test
data, the second function masks the error produced by the
first one. On the other hand, Wah [6] tries to show that the
coupling effect exists considering the entire program composed
of q functions, each having a single fault (given by q in the q-
function model). Next, Wah [6] assumes semantic separability
of all complex faults. However, as we show, there exist a
class of complex faults that are not semantically separable.
We make this restriction clear. Further, our analysis shows that
the probability of coupling is related to the co-domain, not the
domain, as Wah [6] suggests. In fact, Wah [6] considers only
functions which have exactly same domain and range, and
hence are more restricted than our analysis. Finally, we show
that even if syntax is considered, our analysis remains valid.

While Offutt [2] evaluates the traditional coupling effect,
and shows the empirical relation with respect to all simple
faults and their combinations, we aim to demonstrate the
composite fault hypothesis and evaluate the relation between
any pair of faults, and the combined fault including both.

III. THEORY OF FAULT COUPLING

We start with a function compositional view of programs
(similar to Wah [7]). While Wah considered composition of
q functions, with as many as q faults, we consider only pairs

of faulty functions, since any faulty program with a number
of separable faults can be modeled as composition of two
functions with (possibly complex) faults.

We have the following assumptions, and simplifications
(also made by Wah [6]): our biggest simplification is modeling
programs by mathematical functions. While, theoretically,
there can be an infinite number of alternatives to any given pro-
gram, practically, the domain and co-domain often determines
the plausible syntactical alternatives. Next, we assume a finite
domain and co-domain, and consider only total functions.
We also assume that faulty versions have same domain and
co-domain (that is, the same type) as that of the non-faulty
version. Since any function can be regarded as a single
parameter function by considering the input as composed of
a tuple of all the original parameters, we restrict our analysis
to single parameter functions. While Wah considers how a
known number of test inputs (1, 2, 3, or more than 3), some
of which can detect some of the component faulty functions,
can together detect the composite faulty function, we consider
the probability of any single test input that can detect a fault
being masked by a new fault. This allow us to significantly
simplify our analysis.

Note that the theory does not rely on the constituent faults
being considered to be simple.

A major idea in our analysis is the semantic separability of
faults. Two faults present in a function are said to be separable
if and only if the smallest possible chunk containing both
faults can be decomposed into two functions g and h such
that each fault is isolated within a single function (providing
ga and hb as faulty functions), the behavior of composition
h◦g equals the behavior of the original chunk in terms of input
and output , and composition hb◦ga equals the behavior of the
function with both faults. A chunk here is any small section of
the program that can be replaced by an independent function
preserving the behavior.

That is, given a function:

def functionX(x, y, n)
for i in (1..n):

y = faultyA(x) (1)
if odd(i): x = faultyB(y) (2)
x += 1

The lines (1) and (2) together form a chunk. The interaction
between the faults and their separability is discussed next.

A. Interaction Between Faults

There are two kinds of interaction between faults: weak, and
strong. Weak interactions occur when faults can be semanti-
cally separated. That is, given two faults â and b̂ in a function
f , which can be split into fab = hb ◦ ga, where ga and hb
are faulty functions, the only interaction between â and b̂ is
because the fault â modifies the input of h (or hb) from g(i0)
to ga(i0) (where i0 is an input for f ). That is, the interaction
can be represented by a modified input value.

Strong interactions happen when the interpretation of the
second fault is affected by the first, and hence faults can’t be
semantically separated. For example, consider:



def swap(x,y): x,y=y,x

Say this was mutated into
def swap(x,y): x,y=x,y

Clearly, there were two independent lexical changes: x → y
and y → x. However, consider the disassembly:
>>> dis.dis(swap)
1 0 LOAD_FAST 1 (y)

3 LOAD_FAST 0 (x)
6 ROT_TWO
7 STORE_FAST 0 (x)
10 STORE_FAST 1 (y)
13 LOAD_CONST 0 (None)
16 RETURN_VALUE

The changes in source resulted in intertwined bytecode
changes, and hence cannot be separated. Since the faults
cannot be separated, strong interactions produce faults with
different characteristic from the component simple faults, and
hence should be considered independent atomic faults4. Why
should we consider the semantically inseparable faults as
independent faults? An intuitive argument is to consider two
functions that implement id (these are not strongly interact-
ing). That is, given any value x, we have g(x) = h(x) = x.
If two faults â, and b̂ occur as we suggest above in g and h,
causing inputs i to ga and inputs j to hb to fail, then the faulty
inputs for hb ◦ ga are bounded by i ∪ j, where i represents
inputs to f that result in faulty outputs due to faulty g and j,
inputs to f resulting in faulty outputs due to faulty h.

What about fault masking? Any input i that failed for ga
could possibly result in an input value that would cause a
failure for hb. For any element outside of i, there is no
possibility of two faults acting on it, and hence no possibility
of fault masking. However, if the faults are not semantically
separable, one cannot make these guarantees, as the faulty
inputs may be larger than i ∪ j or even completely different.
In the general case, when the interaction is weak, we expect
the faulty output for up to i ∪ j.

For formal proof, consider a function f that has domain x,
represented as h ◦ g using two functions. Replacing g with ga
causes i ∈ x inputs to result in faults. Similarly, replacing h
with hb causes j ∈ x inputs to f to result in faults. Joining
together to form fab, we know that any of i ∈ x has a
potential to produce a faulty output unless it was masked by
hb. Similarly, any of j ∈ x also has the possibility of producing
a faulty output. Now, consider any element k not in either i
or j. It will not result in a faulty output while passing through
ga because it is not in i, further, the value ga(k) = g(k) = k1.
We already know that k1 would not result in a faulty output
from hb because k /∈ j. Hence, any element k /∈ i∪ j will not
be affected by faults â and b̂.

We can make this assertion only because we can replace g
and h separately. If â and b̂ interacted strongly, any function
could potentially replace f . Hence, any element in x may
potentially result in a fault when fab is applied. Harman et
al. [25] calls these de-coupled higher order mutants.

4Wah [6] ignores strong interaction of faults.

Depending on the language used, other features causing
strong faulty interaction may exist.

B. Analysis

Consider a program f with two simple faults â, and b̂,
which can be applied to f to produce two functions fa and
fb containing one fault each, and fab containing both faults
(Figure 2). Say such a program can be partitioned into two
functions g and h (f = h ◦ g) with restriction that â lies in g,
producing alternative ga, and b̂ lies in h producing hb, such
that the new faulty version of f containing both is given by
fab = hb◦ga. We note that the particular kind of fault depends
on the syntax and semantics of the programming language
used, and there can be fault pairs that cannot be separated
cleanly. As stated previously, we ignore these kinds of fault
pairs as they are syntax dependent and strongly interacting.
Hence, no general solution is possible for these faults.

Given that we can distinguish a fault in isolation using a
given input, what is the probability that another fault would
not result in the masking of that fault for the same input? That
is, given a test input i0 for f , able to distinguish (f , fa), what
is the probability that (f , fab) can be distinguished by the
same input?

Since we know that fa is distinguished from f , we know
that ga(i0) 6= g(i0). Hence, the function hb will have a
different input than h. Thus, the question simplifies to: given
an alternate input for function h (or anything that can be
substituted in its place), what is the probability that a faulty
h, with the new input ga(i0) will result in same output as the
old h, with the old input g(i0)?

Let us assume for simplicity that functions g and h have
fixed domain and a co-domain given by g ∈ G : L→ M and
h ∈ H : M → N. That is, h belongs to a set of functions
H , which has a domain M , and a co-domain N such that
m = |M | and n = |N |. Considering all possible functions
in H , with the given domain and co-domain, there will be
nm unique functions in H (separated by at least one different
{input, output} pair).

The only constraint on hb we have is that hb(ga(i0)) should
result in the same output as h(g(i0)). We are looking for
functions that can vary in every other {input, output} pair
except for the pair given by {ga(i0), h(g(i0))}. There are
nm−1 functions that can do that out of |H| = nm functions.
That is, the composite coupling ratio is given by κ = 1−nm−1

nm ,
which is simplified to 1 − 1

n of the total number of eligible
functions where m is the size of domain, and n is the size of
co-domain of the function. That is, given any test input, the
probability of the composite coupling effect where the fault
in one constituent is not masked by the fault in another is
1 − 1

n , and 1
n tends to be very small when the co-domain of

the function (n) is large.
A symmetric argument can be made when the function

fixed is h, and g varies. There are ml functions in G, of
which ml−1 can be used as a replacement without affecting
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Fig. 1. Recursive interaction. The blue solid lines represent the masking
values where the values are same as what would be expected before the fault
was introduced, and the red dotted lines represent values that are different
from the non-faulty version so that faults could be detected.

{input, output}, in which case, the probability of composite
coupling effect is 1− 1

m where m is the co-domain5.

C. Recursion and Iteration

Recursion and iteration can present challenges to our anal-
ysis. For example, consider:

while y > 0: y = h(g(y)

The two functions g and h are otherwise independent. How-
ever, the input of h influences g, and vice versa. Here, we
do not know when the loop will end, and any faults will
be detected. The faults may be detected after a larger or
smaller number of iterations than the non faulty version.
Hence, we consider the chances of propagation of the faulty
value after each iteration. That is, if a faulty value is present
after executing the function ga once, what are the chances that
it will be caught at the end of each iteration?

Let f denote the program segment composed of g and h.
After the first iteration of f , we will have 1

n possibility for
fault masking as we discussed before, and n−1

n possibility for
detectable faulty values. Now, consider the next iteration. In
this case, of the original 1

n masked outputs, 1
n will again be

masked, for a total of 1
n2 , and the remaining (n−1)

n2 will have a
value that is faulty. Consider the original n−1

n that had faulty
values in the first iteration. Out of that, 1

n will be masked
in the second iteration (i.e. n−1

n2 ). Similarly, (n−1)2

n2 of the
original faulty outputs will remain faulty. That is, after second
iteration, we will have 1

n2 + n−1
n2 = 1

n masked output values.
Similarly, we will have n−1

n2 + (n−1)2

n2 = n−1
n possibility of

faulty output values. That is, after each iteration, we will
have 1

n possibility of fault masking (See Figure 1). Hence,
composite fault hypothesis will hold even for recursion and
iteration.

1) Premature loop exits: What if a fraction of inputs –
say x – diverge so much (crashes or gets detected by asserts)
that they never make it through all iterations? We can model
this as the case where the remaining fraction (y = 1 − x) of
inputs belong to a function with reduced domain and hence
co-domain. This is more involved because functions with a
smaller co-domain are more prone to fault masking. We need

5We note that the logic of probability is very similar to Wah [6], and this is
the same value derived by Wah for single test input, where n is the domain of
the function as Wah does not consider functions that have a different domain
and co-domain.

to show that the total fraction of masked values is lesser than
the original 1

n , or show the other side

x+
ny − 1

ny
≥ n− 1

n
(1)

We assume that nx ≥ 1 (at least one input causes a crash)
and ny ≥ 1 (at least one input reaches the end – otherwise,
there is no fault masking involved).

We simplify Equation 1 by first making the denominator the
same (ny) and then simplifying, which results in the equation
nxy + ny − 1 ≥ ny − y. On expanding y to 1 − x, and
simplifying, we get ny ≥ 1. Note that this was our original
assumption. Hence, premature loop exits result in a stronger
coupling between faults.

What happens if instead of a fixed fraction, we have say r%
input values detected at the end of each iteration? Of course,
any finite number of loops could be modeled as we did above.
If instead, we rely on the crashes alone to distinguish faulty
values, we are still in luck. Each iteration detects r% of the
input values, and the remaining q = 1 − r% of the values
restart the iteration. This results in r + rq + rq2 + . . . rqn−1

values getting detected at the end of nth iteration. This infinite
sum converges to 1. That is, no faults will be masked.

2) Different execution paths: Another wrinkle is the pattern
where iteration proceeds in different paths during different
executions. For example:

for i in 1..10:
if odd(i): x = g(y)
else: y = h(x)

In programs such as this, one may unroll the loop, i.e.

for i in 1..10:2:
x = g(y)
y = h(x)

which can make it amenable to the above treatment. Recursion
can be resolved similarly. We do not claim that this is
exhaustive. There could exist other patterns of recursion or
iteration that do not fit this template. However, most common
patterns of recursion and iteration could be captured in this
pattern.

Can we extend the bounds we found (i∪j for faulty outputs)
to recursion? Unfortunately, it is possible for a faulty function
to interact with its own output during recursion, and hence
mask a failure. Hence, we can not bound the failure causing
inputs in a doubly faulty function that incorporates recursion.

D. Accounting for Multiple Faults

What happens when there are multiple faults? Say, we have
a system modeled by p◦q◦r◦s◦t◦u, where any of the functions
may be faulty or not faulty, for example pa◦q◦rb◦sc◦td◦u. We
can not directly apply the technique in recursion because there
are non-faulty functions interspersed. The thing to remember
here is that a non faulty function immediately adjacent to a
faulty function can together be considered a faulty function.
Hence, the above reduces to (pa ◦ q) ◦ rb ◦ sc ◦ (td ◦ u),
or equivalently pqa ◦ rb ◦ sc ◦ tud. This is now amenable
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Fig. 2. Fault interaction (ga(i0) is masked by hb′ )

to the treatment in Figure 1 because each function now can
produce 1

n non-faulty and n−1
n faulty outputs. An additional

complication is that a general expression is not possible unless
we simplify further, and assumes that domain and co-domain
of all functions are same. With this simplification, even when
we consider a number of faulty functions, the mean ratio of
fault masking remains the same at 1

n . Indeed, this is one of
the significant differences from Wah. Wah does not attempt
to collapse the non-faulty functions to their neighbours. Why
do we do this? Because we know that each faulty function on
its own was detected by the test suite. That is, we know that
p ◦ qa ◦ r ◦ s ◦ t ◦ u would have been detected. Hence, we can
certainly consider pqa ◦ r ◦ s ◦ t ◦ u as the set of functions
where the function pqa is the function with an atomic fault.

E. Dynamically Checked Languages

In the case of dynamically checked or unityped languages,
every single function has the same type (domain, co-domain),
and alternatives are large (but finite), because one may not
identify a faulty input type until execution. Hence, we can
expect large composite coupling ratio.

F. Impact of Syntax

In order to model composite coupling, we assumed that
all faults are equally probable, which is often not the case,
with faults that are closer syntactically being more probable
than faults which are not in the syntactic neighborhood of
correctness. In fact, we have some reasonable estimate of the
distribution of size of faults that programmers make [26].

Implementation of functions as code need not necessarily
follow the same distribution as that of their mathematical
counterparts. For example, for mathematical functions, there
exist only 4 functions that map from a boolean to a boolean.
However, there can be an infinite number of program im-
plementations of that function. The way it can be made
tractable is again to consider the human element. The com-
petent programmer hypothesis suggests that faulty programs
are close (syntactically) to the correct versions. So one need
only consider a limited number of alternatives (the number of
which is a function of the size of the correct version, if one
assumes that each token may be legally replaced by another).

As soon as we speak about syntactic neighborhood, the
syntax of a language can have a large influence on which faults
can be considered to be in a neighborhood. However, we note

that most languages seem to follow a similar distribution of
faults with a size below 10 tokens for 90% of faults [26].

Let us call the original input to h, g(i0) = j0, and the
changed value ga(i0) = ja. Similarly, let f(i0) = k0, fa(i0) =
ka, fb(i0) = kb, and fab(i0) = kab. Given two inputs i0, and
i1 for a function f , we call i0, and i1 semantically close if their
execution paths in f follow equivalent profiles, e.g taking the
same branches and conditionals. We call i0 and i1 semantically
far in terms of f if their execution profiles are different.

Consider the possibility of masking the output of ga by hb
(hb′ in Figure 2)). We already know that h(ja) = ka was
detected. That is, we know that ja was sufficiently different
from j0, that it propagated through h to be caught by a test
case. Say ja was semantically far from j0, and the difference
(i.e the skipped part) contained the fault b̂. In that case, the
fault b̂ would not have been executed, and since kab = ka, it
will always be detected.

On the other hand, say ja was semantically close to j0 in
terms of g and the fault b̂ was executed. There are again three
possibilities. The first is that b̂ had no impact, in which case
the analysis is the same as before. The second is that b̂ caused
a change in the output. It is possible that the execution of
b̂ could be problematic enough to always cause an error, in
which case we have kab = kb (error), and detection. Thus
masking requires kab to be equal to k0.

Even if we assume that the function hb is close syntactically
to h, and that this implies semantic closeness of functions h
and hb, we expect the value kab to be near ka, and not k0.
This suggests that masking, even when considered in the light
of syntactical neighborhood, is still unlikely, but this belief
requires empirical verification since we are unable to assign
probabilities to the cases above. Our empirical data (provided
in the next section of this paper) should shed light on the actual
incidence of masking when syntactic/semantic neighborhoods
are taken into account, since real faults are likely in the
syntactic and semantic neighborhood of the correct code.

A statistical observation can further buttress our argument.
We know that if all functions were equally probable, fault
masking has low probability. Now, consider the functions that
are syntactically close to a given function. For most input
values, we can assume that the syntactically close functions
will have same output as that of the given function, more so
than functions that are far away lexically. If h did not mask a
value originally, (which we know since we were able to detect
fault h(ga(i0))), then the syntactically close functions to h will
with a higher probability than a uniform sample, produce the
same value as h(ga(i0)), which will be detected as faulty.

G. Can Strong Interaction be Avoided?

The coupling effect argues that if a test suite can find all
atomic faults, then by composite fault hypothesis, a large
percentage (κ) of complex faults will also be found. However,
when can one assert that all atomic faults have been found?
Any strong fault interaction has the potential to produce an
atomic fault.



Given that the strong interaction is dependent on the execu-
tion, can runtime environment or compiler order computation
so that strong interaction is no longer present?

Consider the function swap (a,b) = (b,a) that we examined
earlier. We see how one may mistakenly use id (a,b) = (a,b)
instead, and cause a strong interaction. Now, the question is,
does there exist a way to split the two functions, so that the
condition of separability can be satisfied? Given that there
are only four possible functions that can operate on a tuple,
(swap (a,b) = (b,a), id (a,b) = (a,b), dupleft (a,b) = (a,a),
dupright (a,b) = (b,b)) we could check it exhaustively. The
condition is that the functions representing single faults should
individually cause a detectable deviation on their own, and on
composition, result in same behavior as id. Now, it can be seen
that, neither of the single fault functions can behave like swap
since that represents no fault, so they can not behave like id,
since that suggests that the other faulty function behaves like
swap. Hence, no compiler or runtime environment can remove
the strong interaction in swap.

Where can we expect strong interaction to appear? While we
can not provide an exhaustive overview of possible language
features, we can demonstrate that even very simple languages
such as the λ-calculus are vulnerable. Consider the λ-calculus
expression λx y .y x, and its faulty version λx y .x y. There are
two lexical points where the faults have been injected {x →
y, y → x}. However, they cannot be separated out. That is,
even such simple features can cause strong interaction.

IV. METHODOLOGY FOR ASSESSMENT

Our methodology was guided by two principles [27]: We
sought to minimize the number of variables, and tried to be
as general as possible. Hence, we selected Apache commons
for analysis.

For our set of projects, we iterated through their commit
logs, and generated reverse patches for each commit. For
each patch thus created, we applied the patch on the latest
repository, and removed any changes to the test directory, thus
ensuring that the test suite we tested with was always the latest.
Any patch that resulted in a compilation error was removed.
This resulted in a set of patches for each project that could be
independently applied. The complete test suite for the project
was executed on each of the patches left, and any patch that
did not result in a test failure was removed. The failed test
cases that corresponded to each patch were thus collected. At
this point, we had a set of patches that introduce specific test
case failures. The set of Apache projects, along with the set
of reverse patches thus found, are given in Table I.

We conducted our remaining analysis in two parts. For the
first part, we generated patch pairs by joining together two
random patches for any given project. For the projects where
the total number of unique pairs was larger than 100, we
randomly sampled 100 of the pairs produced. After removing
patch combinations that resulted in compilation errors, we
had 1,126 patch combinations. We evaluated the test suite
of each project against the pair-patches thus generated, and
collected the test cases which failed against these. Adopting

TABLE I
APACHE COMMONS LIBRARIES

Projects SLOC TLOC CPatches Fails
1 commons-bcel 30,175 3,155 148 6
2 commons-beanutils 11,640 21,665 63 5
3 commons-cli 2,665 3,768 71 5
4 commons-codec 6,599 11,026 179 4
5 commons-collections 27,820 32,913 333 16
6 commons-compress 18,746 13,496 430 65
7 commons-configuration 26,793 37,806 322 78
8 commons-csv 1,421 3,168 150 8
9 commons-dbcp 11,259 8,487 98 18

10 commons-dbutils 3,064 3,699 43 1
11 commons-discovery 2,320 268 171 1
12 commons-exec 1,757 1,601 90 5
13 commons-fileupload 2,389 1,946 129 8
14 commons-imaging 31,152 6,525 174 4
15 commons-io 9,813 17,968 177 18
16 commons-jexl 10,921 9,509 54 10
17 commons-jxpath 18,773 6,137 10 2
18 commons-lang 25,468 43,981 571 49
19 commons-mail 2,720 3,869 48 5
20 commons-math 84,809 89,336 954 142
21 commons-net 19,749 7,465 454 21
22 commons-ognl 13,139 6,873 190 3
23 commons-pool 5,242 8,042 149 12
24 commons-scxml 9,524 5,119 74 7
25 commons-validator 6,681 7,926 126 17

SLOC is the program size in LOC, TLOC is the test suite size in LOC,
CPatches is the number of compiled patches, and Fails is the number of test

failures.

the terminology of Jia et al. [28], out of 1,126, we had 1,126
coupled higher order mutants, and 56 subsuming mutants.6

Out of these, there were only 2 strongly subsuming mutants.
We tried to reduce the number of external variables further

for the second part, and chose a single large project — Apache
commons-math. We generated a set of combined patches by
joining 2, 4, 8, 16, 32, and 64 patches at random, and evaluated
the test suite for commons-math against each of these kth

order patches. We removed all patches that resulted in any
compilation errors, producing 342 patch combinations.

For both parts of our analysis, we generated two sets. The
first set containing the unique failures from the constituent
faults in isolation, and the second containing the combined
patches.

V. ANALYSIS

There are two questions that we tackle here. The first
investigates the fraction of test cases that detect any of the
constituent mutants that also detect the combined mutant.
That is, evaluates the following prediction from the model:
“Given two faults, and the test cases killing each, (assuming
a sufficiently large domain and co-domain, and ignoring the
effects of strong interaction), there is a high probability for
the same test cases to kill the combined fault.”

The second investigates the general coupling effect. Since
the general coupling ratio does not distinguish between strong
and weak interaction, this also serves as an evaluation of the

6Of course, our patches are derived from actual faulty code, not mutants
in the traditional sense of generated modification.



All Projects: composite coupling
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Fig. 3. The size of set of the test cases able to detect the faults when they
were separate is in the x-axis, and the subset of the same test cases able to
detect the combined fault is in the y-axis. Colors correspond to projects.

strong interaction between faults where inputs other than the
original i and j – that is, outside i∪j – becomes faulty (where i
represents faulty inputs to f due to faults in h, and j represents
faulty inputs to f due to faults in g).

Indeed, we believe that strong interaction between different
faults is rarer than weak interaction. While there is no easy
way to verify it, one may look at the newer faults (new test
failures) that are introduced by a combination of patches when
compared to the original patches as instances of strong fault
interaction, which may be considered a reasonable proxy. Our
empirical evaluation does not require individual patches to be
simple faults. Our theory suggests that irrespective of whether
the faults are complex or not, we can expect the same fault
masking probability.

A. All Projects

This section investigates fault pairs from all projects.
1) The Composite Fault Model: Here, we try to answer the

question: what percentage of test cases detecting constituent
faults can detect the complex faults?

Figure 3 plots the set of test cases able to detect the faults
when they were separate with the set of test cases able to
detect the combined fault. To analyze the fraction of test
cases expected to detect the combined mutant, we evaluate
the regression model given by:

µ{AfterT |BeforeT} = β0 + β1 ×BeforeT (2)

where BeforeT is the size of the test suite that includes all
test cases that can detect both faults separately, and AfterT
is the size of the test suite which is a subset of BeforeT that
can detect the fault pair when combined. We force β0 to zero
to account for the fact that if no test cases detected the original
mutant, then the question of their fraction does not arise. This
linear regression model lets us predict the number of test fails
for combined faults from the test fails for separated faults.

We note that we are interested in β1 for another purpose.
β1 is also the composite coupling ratio κ. Thus this regression
provides us with a model for prediction, its goodness of fit
(R2), and also the composite coupling ratio.

All Projects: general coupling
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Fig. 4. The size of the set of test cases able to detect the faults when they
were separate is the x-axis, and the set of all test cases able to detect the
combined fault is in the y-axis. Colors correspond to projects.

2) The General Coupling Model: Figure 4 plots the general
coupling of faults. We evaluate the following regression model.

µ{NewT |BeforeT} = β0 + β1 ×BeforeT (3)

where BeforeT is the size of the test suite that includes all
test cases that can detect both faults separately, and NewT
is the size of the test suite that can detect the fault pair
when combined. Note that we do not set β0 = 0 here as the
combined fault pair may be detected by a new test case even
if its constituents were not detected. In fact, β0 represents the
complex faults that became detectable due to interaction even
though the constituent faults are not detectable.

However, if one wishes to investigate the general coupling
ratio, we have to investigate a simpler regression model,
because the general coupling ratio does not permit an intercept.

µ{NewT |BeforeT} = β1 ×BeforeT (4)

Here, similar to the previous section, β1 corresponds to the
general coupling ratio C.

3) Strong fault interaction: The incidence of strong fault
interaction may be ascertained by the average number of new
test cases that failed for the combined patch. Note that this
number is not exhaustive, as some of the original test cases
may fail for new faulty behavior too, even if the behavior is
not same as that of the component faults.

B. Apache Commons-math

1) The Composite Fault Model: We try to answer the
question what percentage of test cases detecting constituent
faults can detect the complex faults? for Commons-math. We
rely on the regression given by Equation 2. Figure 5 plots test
cases able to detect the faults when they were separate with
the test cases able to detect the combined fault.

2) The General Coupling Model: We rely on the regres-
sions given by Equation 3 and Equation 4. Figure 6 plots the
general coupling of faults for Apache commons math.



Commons-math: composite coupling
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Fig. 5. The set of test cases able to detect the faults when they were separate is
in the x-axis, and the subset of the same test cases able to detect the combined
fault is in the y-axis. Colors correspond to number of patch combinations.

Commons-math: general coupling
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Fig. 6. The set of test cases able to detect the faults when they were separate
is in the x-axis, and the set of all test cases able to detect the combined fault
is in the y-axis. Colors correspond to number of patch combinations.

3) Strong fault interaction: The incidence of strong fault
interaction may be ascertained by the average number of new
test cases that failed for the combined patch. The difference of
note here is that the number of patches are larger, and hence
the chances of strong interaction are correspondingly larger.

VI. RESULTS

A. All Projects

The results for regression for Equation 2 for all projects
is given in Table II. The correlation between the dependent
and independent variable is 0.99975. The composite coupling
ratio was found to be 0.99916. The results for regression for
Equation 3 for all projects is given in Table III. The correlation
between the dependent and independent variable is 0.99967.
The results for regression for Equation 4 for all projects is
given in Table IV. The general coupling ratio was found to
be 0.99931. Further, the mean number of faulty test cases that

TABLE II
ALL PROJECTS FOR COMPOSITE COUPLING RATIO. R2 =0.99975

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9992 0.0005 2,116.13 0.0000

TABLE III
ALL PROJECTS R2 =0.99967

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0399 0.0189 -2.12 0.0343

SeparateFaults 0.9997 0.0005 1,847.83 0.0000

TABLE IV
ALL PROJECTS FOR GENERAL COUPLING RATIO. R2 =0.9997

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9993 0.0005 1,939.82 0.0000

were not present in the component faults were found to be
0.0417. See Table V for the summary.

B. Apache commons-math

The results for regression for Equation 2 for all projects
is given in Table VI. The correlation between the dependent
and independent variable is 0.99983. The composite coupling
ratio was found to be 0.98956. The results for regression
for Equation 3 for commons-math is given in Table VII. The
correlation between the dependent and independent variable
is 0.99971. The results for regression for Equation 4 for
commons-math is given in Table VIII. The general coupling
ratio was found to be 0.9944. Further, the mean number of
faulty test cases that were not present in the component faults
were found to be 0.137. See Table IX for the summary.

VII. DISCUSSION

Fault masking is one of the key concerns in software testing.
The coupling effect hypothesis asserts that fault masking is
rare. Unfortunately, little is known about the theory behind
fault coupling. We study the coupling effect and fault masking
using theoretical and empirical methods.

TABLE V
SUMMARY FOR ALL PROJECTS.

SeparateFaults JoinedFaults RemovedFaults AddedFaults
bcel 27.73 27.73 0.00 0.00

beanutils 4.80 1.60 3.20 0.00
cli 7.60 7.60 0.00 0.00

codec 2.50 2.50 0.00 0.00
collections 16.49 16.49 0.00 0.00

compress 11.60 11.60 0.00 0.00
configuration 37.19 37.16 0.04 0.02

csv 2.00 2.00 0.00 0.00
dbcp 10.60 10.91 0.01 0.32
exec 16.50 16.50 0.00 0.00

fileupload 4.64 4.64 0.00 0.00
imaging 6.50 6.50 0.00 0.00

io 7.93 7.55 0.54 0.17
jexl 3.58 3.56 0.02 0.00

jxpath 3.00 3.00 0.00 0.00
lang 4.46 4.46 0.00 0.00
mail 2.30 2.30 0.00 0.00
math 7.67 7.64 0.03 0.00

net 4.13 4.13 0.00 0.00
ognl 27.00 27.00 0.00 0.00
pool 4.48 4.45 0.05 0.02

scxml 36.62 36.62 0.00 0.00
validator 3.07 3.06 0.01 0.00



TABLE VI
C-MATH FOR COMPOSITE COUPLING RATIO. R2 =0.99983

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9896 0.0007 1,418.94 0.0000

TABLE VII
C-MATH R2 =0.99971

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0924 0.0482 1.92 0.0563

SeparateFaults 0.9933 0.0009 1,090.92 0.0000

Our theoretical evaluation of the composite fault hypothesis.
shows that for any pair of separable faults, composite coupling
effect exists. We find that composite coupling ratio κ = 1− 1

n ,
where n is the co-domain of the function being considered, and
that syntactical neighborhood does not have an adverse impact
on our result. Further, while Wah suggests that, as system size
increases the coupling effect weakens exponentially, our results
suggest that the mean coupling ratio remains the same at 1

n .
Why is our prediction on fault masking so important? Basic

testing relies on fault masking. Say you are unit testing a
function with multiple faults, and some of the faults are left
undetected due to fault masking. Wah’s analysis suggests that
when we integrate these units into a larger system, the faults
in the larger system have a much higher (indeed exponential)
tendency to self correct, and avoid failure due to masking.
Our analysis suggests that even on larger systems composed
of smaller systems, the rate of fault masking remains the same.

We proposed the existence of strongly interacting faults,
which cannot be accounted for within the formal coupling
theory. Our empirical analysis (see Table V and Table IX)
indicates that strong interaction is possibly rare, occurring
at a similar frequency as fault masking. Figure 3 suggests
that while there is some reduction in the combined faults for
the faults with smaller semantic footprint (as given by the
number of test cases that failed for that fault) with respect to
constituent faults, the difference vanishes when the size of the
fault increases. This same effect is also seen in Figure 5.

The results for regression (Equation 2) also suggest a similar

TABLE VIII
C-MATH FOR GENERAL COUPLING RATIO. R2 =0.99983

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9944 0.0007 1,401.55 0.0000

TABLE IX
SUMMARY FOR ALL COMMONS-MATH.

SeparateFaults JoinedFaults RemovedFaults AddedFaults
2 7.67 7.64 0.03 0.00
4 14.67 14.70 0.05 0.07
8 30.53 30.42 0.17 0.06

16 59.25 59.09 0.42 0.25
32 109.85 108.96 1.37 0.48
64 220.25 219.50 3.00 2.25

observation — that test cases that are able to detect a fault in
isolation will with very high probability detect the same fault
in combination with other faults.

Overall, our statistical analysis suggests that there is a very
high probability (between {0.998 & 1.000} for all projects,
and {0.988 & 0.991} for commons-math — 95% confidence
interval with statistical significance p < 0.0001) that when
two faults are paired to produce a combined fault, any test
cases that detected either of the faults continue to detect the
combined fault.

Our results for Table IV suggests that between {0.998
& 1.000} of complex faults are caught (95% confidence
interval, p < 0.0001). This is again confirmed by the deeper
analysis of Apache commons-math, using larger size faults
in Table VIII which suggests that between {0.993 & 0.996}
fraction of complex faults are caught (95% confidence interval,
p < 0.0001). We note that this is the first confirmation of the
general coupling effect (unlike the mutation coupling effect
which has been validated multiple times). Why is validating
the general coupling effect important? We already know that
faults emulated by traditional mutants are only a subset of the
possible kinds of faults (Just et al. [14] found that up to 27%
of faults were inadequately represented by mutants). Hence,
it is important to verify the general coupling effect using real
faults so that our results are applicable for faults in general,
and especially for possible future mutation operators. Indeed,
the mutation coupling effect has been validated multiple times,
and we do not attempt it again here.

VIII. CONCLUSION

The coupling effect hypothesis is a general theory of fault
interaction, and is used to quantify fault masking. It also finds
use in mutation analysis. While there is compelling empirical
evidence for the coupling effect, our theoretical understanding
is lacking. The extant theory by Wah is too restrictive to be
useful for real world systems. We address this limitation, and
provide a stronger, modified version of the theory called the
composite fault hypothesis.

Our theoretical analysis suggests that the composite fault
hypothesis has a high probability of occurring (1− 1

n , where n
is the co-domain of the function under consideration) under the
assumptions of total functions, finite domain, and separability
of faults, irrespective of the size of the system.

Our empirical study provides validation, and an empirical
approximation of the composite coupling ratio κ (0.99), with
99% of the test cases that detected a fault in isolation contin-
uing to detect it when it is combined with other faults.
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