
Empirical Evaluation of Frequency Based Statistical Models for
Estimating Killable Mutants

Konstantin Kuznetsov
Saarland University

Germany
konstantin.kuznetsov@cispa.de

Alessio Gambi
Austrian Institute of Technology

Austria
alessio.gambi@ait.ac.at

Saikrishna Dhiddi
University of Passau

Germany
dhiddi@ads.uni-passau.de

Julia Hess
Saarland University

Germany
s9jahess@stud.uni-saarland.de

Rahul Gopinath
University of Sydney

Australia
rahul.gopinath@sydney.edu.au

ABSTRACT
Background. Mutation analysis is the premier technique for eval-
uating test suite quality estimating residual software defects. How-
ever, the reliability of mutation analysis is hampered by equivalent
mutants which are undetectable by test cases. Reliably detecting
and eliminating killable mutants is difficult as it is highly program
and location dependent. Statistical estimation of killable mutants
seems to be a promising approach to tackle this problem.
Aims. Frequency-based species estimationmethods have been pro-
posed as a solution for several related problems in software testing.
This paper investigates whether such frequency-based estimation
methods can accurately estimate the number of killable mutants.
Method.We conducted a large-scale empirical study on the ability
of twelve widely known frequency-based estimators to predict the
number of killable mutants in ten mature software projects.
Result. Our investigation finds limited or no evidence that any of
the statistical estimators are able to consistently predict the num-
ber of killable mutants in projects evaluated.
Conclusion. We found that the investigated estimators lack suffi-
cient predictive power and cannot produce reliable and useful es-
timates of killable mutants.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Software testing and debugging; Empirical soft-
ware validation.

KEYWORDS
Equivalent Mutant Estimation, STADS, Frequency Models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 def determinant(a,b,c,d):
2 ad = a * d

3 bc = b * c

4 return ad - bc

Tests

⊢ determinant(1,2,1,2) = 0

⊢ determinant(1,2,3,4) = -2

Figure 1: A simple program (left) and two of its tests (right)

1 def determinant(a,b,c,d):
2 - ad = a * d

3 + ad = a / d

4 bc = b * c

5 return ad - bc

def determinant(a,b,c,d):
ad = a * d

- bc = b * c

+ bc = c * b

return ad - bc

Figure 2: Killable (left) and equivalent (right) mutants

ACM Reference Format:
Konstantin Kuznetsov, Alessio Gambi, SaikrishnaDhiddi, JuliaHess, and Rahul
Gopinath. 2024. Empirical Evaluation of Frequency Based Statistical Mod-
els for Estimating Killable Mutants. In .ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Mutation analysis is the premier means of assessing the quality
of software test suites in preventing defects [1] and estimating
residual risk [2]. Mutation analysis involves generating mutants
exhaustively and evaluating them against the test suite under con-
sideration (Figure 1-right). Mutants are copies of the original code
(Figure 1-left) in which artificial code mutations that share strong
similarities with real faults are inserted (Figure 2) [3–6].

A test case detects (or kills) a mutant if it induces and observes
a change in behavior in the mutant when compared to the original
program. The mutants undetected by any test case are called sur-
viving mutants. The ratio of the number of mutants killed by a test
suite to the number of killable mutants, called mutation score, is a
good indicator for test suite effectiveness in preventing faults [7].
However, some mutants (Figure 2-right) are behaviorally equiva-
lent to the original program [8]. The amount of such mutants is
program specific [9, 10] and cannot be established a-priori. Conse-
quently, the mutation score might be inaccurate and highly vari-
able. Hence, an accurate estimate of the number of killable mutants
is important in software testing but has remained unsolved.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Konstantin Kuznetsov, Alessio Gambi, Saikrishna Dhiddi, Julia Hess, and Rahul Gopinath

Recently, the Software Testing as Species Discovery (STADS) frame-
work [11] was proposed for estimating reachable but yet to be cov-
ered elements remaining for coverage evaluation.The STADS frame-
work relies on an estimator called Chao’s estimator [12]. It is based
on the idea that the relative frequency of coverage of software el-
ements, such as statements or branches, by test cases contains in-
formation about the number of similar software elements that are
reachable but yet to be covered. Frequency-based estimators such
as Chao’s [12] are designed to be robust toward strong biases in
sampling making them attractive in areas such as reachable cover-
age estimation, which can be strongly program dependent.

Given the closeness ofmutation analysis and coverage analysis—
covering a mutant is a prerequisite for killing it—we adapted the
STADS framework [13] for predicting killable mutants. That is, we
estimate the count of killable mutants from the frequency of mu-
tants killed by test cases. We count the number of mutants killed
by a single test case, those killed by two test cases, and so on, and
use this data to predict the remaining mutants that can be killed.
The idea in frequency-based mutant count estimation is that the
ratio of number of mutants that are killed by a single test case vs
those killed by two test cases, etc., contains the information for
predicting those that are not yet killed.

This leads to the first research question:
1⃝How accurate are frequency-based estimators in predict-

ing killable mutants?
To ensure ground truth for comparison, we first conducted a

large scale manual evaluation of surviving mutants from ten
mature well-tested open-source projects. The mutants were gener-
ated by the state-of-the-art mutation testing framework PIT [14].

Chao’s estimator preferred by STADS is one among the many
frequency-based species estimators in the literature with different
assumptions and prediction accuracies. Since it is not clear which
of these estimators may be applicable to estimating killable mu-
tants, we conducted a large scale empirical study of twelve differ-
ent frequency-based statistical estimators from the literature.

As there is little information on robustness of frequency-based
estimators to sampling biases in mutation analysis, the second re-
search question is:
2⃝Are frequency-based estimators affected by sampling strate-

gies in mutation analysis?
We used three different test suites—developer written, randomly
generated, and feedback-driven—to evaluate this question. If the es-
timators are indeed robust to sampling bias, then the estimations
should coincide or at least overlap significantly. We should also be
able to identify best strategies by comparison to ground truth.

Are frequency-based estimators affected by the specific sam-
pling unit used, such as using a test class as a test unit instead
of a test method? This informs our next question:
3⃝Are frequency-based estimators affected by sampling units

in mutation analysis?
To evaluate the impact of different sampling units, we reanalyzed
the data from our first experiment but with test classes (which con-
tain multiple test methods) as sampling units. We hypothesized
that the estimates should overlap, with the difference in accuracy

(i.e., variance of the estimation) being the only major difference.
We compare the results of both aggregations with the ground truth.
Our large study empirically investigates the hypothesis that (at
least) one of the surveyed frequency-based estimators can be ef-
fectively used to estimate killable mutants.

This paper summarizes the main findings of our study and is
complemented by the replication package [15].

Empirical Study Results Overview. For evaluating 1⃝, after
selecting ten well maintained, open-source projects and analyz-
ing them using PIT, we manually classified 1016 surviving mu-
tants and used this result for assessing the prediction quality of
frequency-based statistical estimators (see Section 2.2). We found
that the estimates from the selected estimators were significantly
different from the manual estimates. Hence, we questioned our ex-
perimental settings and identified two major threats to the validity
of our study: (1) the manual classification of live mutants could be
in error, or (2) the tests themselves could have been biased, with
more effective tests checking only specific parts of the code (e.g.,
business logic), and hence not sufficiently random.

To mitigate the first threat, we extended our initial study with
test suites created with EvoSuite [16], using two fundamentally
different configurations (i.e., a random strategy and a strategy guided
by coverage). We expected the estimations obtained from manual
test suites to coincide with estimations from EvoSuite test suites,
as they predict the same quantity. We evaluate this in 2⃝. To miti-
gate the second threat, we compared the estimates from EvoSuite
test suites and from themanual classification.We expected the esti-
mates from EvoSuite to match estimates from manually classified
live mutants, as EvoSuite test suites are free of manual bias.

We, again, found that manual classificationwas significantly dif-
ferent from estimations from automatically generated test suites,
and the estimates from the automatically generated test suiteswere
significantly different from each other. Therefore, we critically in-
spected our experiment and identified another possible error source–
perhaps, different test objectives in generating test suites may have
an impact. If so, and if the estimation from at least one of the test
suites is correct, then changing the sampling unit from test meth-
ods to test classes should not significantly impact the estimates
from a given test suite. We investigated this in 3⃝. As both test
methods and test classes sample the same quantity, i.e., the killed
mutants, we expected the estimators to produce consistent esti-
mates.

Once again, our results showed that the estimates from testmeth-
ods and test classes were significantly different, which left us with
the only option that the considered frequency-based statistical es-
timators cannot be reliably applied to mutation analysis.

Contributions. In summary, our main contributions are:

• Thefirst empirical study on the application of twelve, widely
used frequency-based statistical estimators on estimating
killable mutants, identifying their limits.

• One of the largestmutation analysis datasets containing 1016
live mutants manually classified by three researchers on ten
mature projects, multiple test suites generatedmanually and
automatically, and their mutation analysis resulting in more
than 2.5B test executions.

Empirical Evaluation of Frequency Based Statistical Models for Estimating Killable Mutants Conference’17, July 2017, Washington, DC, USA

2 STATISTICAL FRAMEWORK
We wish to measure the number of killable mutants with help of
statistical estimators from biometrics. These estimators have also
been successful in counting systems in computer networks [17]
and estimating reachable coverage [13].

We next introduce the foundational model underlying statistical
estimation and the statistical estimators for our study.

2.1 The Urn Probabilistic Model
Consider the following probabilistic model: We have an urn with
colored balls fromwhich 𝑛 balls are sampled with replacement. Let
𝑆 (𝑛) be the colors observed. Furthermore, let us assume that each
ball has multiple colors. We are interested in how many colors 𝑆
this urn can contain. In application to our problem, this urn sam-
pling, which is described with the Bernoulli product model, asso-
ciates each test (a ball) with the killed mutants (the colors of that
ball). We use the definitions from the Bernoulli product described
in the STADS framework to formalize the intuition.

Let P be the program under test andD the set of all tests𝑋 that
exercise P. We model a testing campaign T as a stochastic process

T = {𝑋𝑛 |𝑋𝑛 ∈ D}𝑇𝑛=1

where 𝑇 tests are sampled with replacement from D. Let {𝑀𝑖 }𝑆𝑖=1
be a set of mutants. Mutant 𝑀𝑖 can be detected with a probability
𝜋𝑖 that might be affected by factors specific to𝑀𝑖 ’s definition (e.g.,
the mutation operators that generated it or the location in the code
where it is applied). In the Bernoulli product model, a test can kill
one or more mutants. For a testing campaign of size 𝑇 , we let the
kill incidence matrix, or simply killmatrix,𝑊𝑆×𝑇 be defined as

𝑊𝑆×𝑇 =
{
𝑊𝑖 𝑗 |𝑖 = 1, 2, . . . , 𝑆 ∧ 𝑗 = 1, 2, . . . ,𝑇

}
,

where𝑊𝑖 𝑗 = 1 if test 𝑋 𝑗 kills mutant 𝑀𝑖 and𝑊𝑖 𝑗 = 0 otherwise.
This way, the 𝑖𝑡ℎ-row sum of 𝑊 (𝑌𝑖 =

∑𝑇
𝑗=1𝑊𝑖, 𝑗) denotes the

incidence-based frequency of 𝑀𝑖 being killed. We define the inci-
dence frequency counts 𝑄𝑘 , where 0 ≤ 𝑘 ≤ 𝑇 , as the number of
mutants killed by exactly 𝑘 tests. Consequently, the unobservable
frequency count 𝑄0 denotes the number of undetected mutants.

We assume that the probability that a mutant 𝑀𝑖 is detected
by a test 𝑋 𝑗 is defined as 𝑃 (𝑊𝑖, 𝑗 = 1) = 𝜋𝑖 · 𝜈 𝑗 , where variables
{𝜈1, 𝜈2, . . . , 𝜈𝑇 } are responsible for test effects. Indeed, the ability
of a test to kill mutants might be affected by various factors, such
as coverage, input data, environment or flakiness. We model those
test effects as a random variable from an unknown probability den-
sity functionℎ(𝜈), whereaswe assume fixedmutant detection rates
𝜋𝑖 . Hence, we model probability distribution of each element𝑊𝑖 𝑗
of the killmatrix as a Bernoulli random variable conditioned on 𝜈 𝑗 :

𝑃 (𝑊𝑖 𝑗 = 𝑤𝑖 𝑗 |𝜈𝑗) = (𝜋𝑖𝜈𝑗)𝑤𝑖 𝑗 (1 − 𝜋𝑖𝜈𝑗)1−𝑤𝑖 𝑗 , ∀(𝑖, 𝑗)

The probability distribution for the incidence matrix can be ex-
pressed as the probability for all 𝑖 : 1 ≤ 𝑖 ≤ 𝑆 and 𝑗 : 1 ≤ 𝑗 ≤ 𝑇
that we have𝑊𝑖 𝑗 = 𝑤𝑖 𝑗 .

𝑃
({
𝑊𝑖 𝑗 = 𝑤𝑖 𝑗

}
1≤𝑖≤𝑆,1≤ 𝑗≤𝑇 | {𝜈𝑗 }𝑇𝑗=1

)
=

𝑇∏
𝑗=1

𝑆∏
𝑖=1

𝜋𝑖𝜈𝑗
𝑤𝑖 𝑗 (1 − 𝜋𝑖𝜈𝑗)1−𝑤𝑖 𝑗

Integrating all possible values of {𝜈1, 𝜈2, . . . , 𝜈𝑇 }, we obtain the
unconditional marginal distribution for the incidence-based fre-
quency 𝑌𝑖 for the mutant𝑀𝑖 , which follows Binomial distribution:

𝑃 (𝑌𝑖 = 𝑦𝑖) =
(
𝑇

𝑦𝑖

) [
𝜋𝑖

∫
𝜈ℎ(𝜈)𝑑𝜈

]𝑦𝑖 [
1 − 𝜋𝑖

∫
𝜈ℎ(𝜈)𝑑𝜈

]𝑇−𝑦𝑖

=

(
𝑇

𝑦𝑖

)
𝜆𝑖

𝑦𝑖 (1 − 𝜆𝑖)𝑇−𝑦𝑖 ,

where 𝜆𝑖 = 𝜋𝑖
∫
𝜈ℎ(𝜈)𝑑𝜈 . That is, the frequency 𝑌𝑖 is a binomial

random variable with detection probability 𝜆𝑖 . The expected value
of incidence frequency counts 𝑄𝑘 can be derived as:

𝐸 (𝑄𝑘) = 𝐸

[
𝑆∑
𝑖=1

𝐼 (𝑌𝑖 = 𝑘)
]
=

𝑆∑
𝑖=1

(
𝑇

𝑘

)
𝜆𝑘𝑖 (1 − 𝜆𝑖)𝑇−𝑘 , 𝑘 = 0, . . . ,𝑇 .

2.2 Frequency-Based Estimators
Estimators that can estimate the total number of colors under Bernoulli
Product model belong to the class of frequency-based estimators.
They have been used extensively in biometrics (Ecology) to esti-
mate unseen species [12], and are also called species richness esti-
mators. Estimating species richness in a given geographical area is
challenging because the number of species is often very large, pre-
venting an exhaustive survey. Hence, ecologists use sampling: (1)
dividing the area into sampling units, and (2) randomly selecting
sampling units to survey for number of species found.

Sampling data might show different distributions of species in
sampling units and might be incomplete. Hence, species richness
estimation estimates the total number of species that is present in
the considered geographical area including species not found in any
sampling unit. The idea is that we can estimate the number of
species that did not show up in any sampling unit by considering
the next rarest species, such as species detected only once (single-
ton), twice (doubleton), and so on.

Chao [12] identified two kinds of species richness estimators
based on whether they adopt incidence data, i.e., data about the
presence of species across multiple sampling units, or abundance
data, i.e., data about the number of individuals of different species
found. As our model leverages kill incidence matrix, we primarily
resort to incidence sampling estimators.

Incidence sampling considers 𝑇 sampling units randomly se-
lected among all the available ones and assumes these are inde-
pendent [12]. In each sampling unit, the relevant (categorical) data
is the presence of various species; hence, incidence sampling data
do not consider the explored size of each species. After surveying
all the 𝑇 sampling units, incidence sampling reports the count of
species that appear only once (𝑄1), twice (𝑄2), and so on. Using
these values, the estimators predicts𝑄0, i.e., the number of species
that never appeared during sampling.

2.2.1 Chao estimators [18]. The basic Chao estimator is:

𝑆Chao =

{
𝑆obs + 𝑇−1

𝑇 𝑄2
1/(2𝑄2) if 𝑄2 > 0.

𝑆obs + 𝑇−1
𝑇 𝑄1 (𝑄1 − 1)/2 otherwise.

𝑆obs is the observed species count,𝑄1 and𝑄2 the frequency of sin-
gleton and doubleton species, and𝑇 is the number of sampled units.
This estimator is represented as Chao in the rest of the paper.

Conference’17, July 2017, Washington, DC, USA Konstantin Kuznetsov, Alessio Gambi, Saikrishna Dhiddi, Julia Hess, and Rahul Gopinath

Chiu et al. [19] derived an improved version (referred to as iChao),
whichmakes use of the additional information of tripletons𝑄3 and
quadrupletons 𝑄4 to estimate undetected species richness.

𝑆iChao = 𝑆Chao +
𝑇 − 3
𝑇

𝑄3

4𝑄4
×max

[
𝑄1 −

𝑇 − 3
𝑇 − 1

𝑄2𝑄3

2𝑄4
, 0

]
Chao estimators are known to provide lower bounds estimates.

2.2.2 Jackknife estimator [20, 21]. The first and second order Jack-
knife estimators are computed as follows:

𝑆jack1 = 𝑆obs +𝑄1

(
𝑇 − 1
𝑇

)
𝑆jack2 = 𝑆obs +

2𝑇 − 3
𝑇

𝑄1 −
(𝑇 − 2)2
𝑇 (𝑇 − 1)𝑄2 .

Thesecond order Jackknife [22] ismore robust to sampling bias [23]
but has larger standard error. Higher-order Jackknife estimators
(𝑆jackJ) are constructed similarly. We consider up to J = 5, and au-
tomatically select the best performing one (referred as Jackknife).
These estimators underestimate on small sample size and overesti-
mate otherwise [12].

2.2.3 Incidence coverage estimator [24]. The Incidence Coverage
Estimator (referred as ICE) is given by:

𝑆ICE = 𝑆freq +
𝑆infreq

𝐶infreq
+ 𝑄1

𝐶infreq
𝛾2infreq, 𝐶infreq = 1 −𝑄1/

𝑘∑
𝑖=1

𝑄𝑖 ,

𝛾2infreq = max

[
𝑆infreq

𝐶infreq

𝑇infreq

𝑇infreq − 1

∑𝑘
𝑖=1 𝑖 (𝑖 − 1)𝑄𝑖(∑𝑘

𝑖=1 𝑖𝑄𝑖
) (∑𝑘

𝑖=1 𝑖𝑄𝑖 − 1
) − 1, 0

]
𝑆freq is the number of species that occur more than 𝑘 times, while
𝑆infreq is those that do not. 𝑇infreq is the number of sampling units
that include at least one infrequent species. A 𝑘 = 10 cut-off is
recommended. We also considered the original coverage estimator
as first proposed by Lee et al. [25], which is equivalent to the ICE
with 𝑘 = 0 (ICE-k0). Gotelli et al. [26] provided a version (referred
as ICE-1) for highly heterogeneous communities, which underes-
timates less.

2.2.4 Bootstrap estimator [22]. The Bootstrap estimator is based
on resampling 𝑇 sampling units with replacement from a set of
initially observed𝑇 sampling units a sufficient number of times𝑚.

𝑆𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 = 𝑎𝑣𝑔𝑚 (𝑆𝑜𝑏𝑠 +
𝑆𝑜𝑏𝑠∑
𝑗=1

(1 − 𝑌𝑗/𝑇)𝑇)

𝑌𝑗 is the number of sampling units where species 𝑗 is detected.

2.2.5 Zelterman estimator [27]. Zelterman’s estimator (referred as
Zelterman) is frequently used in Social Sciences, in particular in
illicit drug use research. It is defined as:

𝑆𝑧𝑒𝑙𝑡𝑒𝑟𝑚𝑎𝑛 = 𝑆𝑜𝑏𝑠 + 𝑆𝑜𝑏𝑠/[(1 + 𝜆)𝑇 − 1], 𝜆 = 2𝑄2/(𝑚 − 1)𝑄1

2.2.6 Other estimators. So far, we discussed incidence estimators
that take as an input incidence data. However, we can consider the
whole test suite as one single sample and count mutant kills.

With abundance data, we explore Chao-Bunge, PCG, UNPMLE,
and PNPMLE estimators. Since they have complex formulation,
we suggest the reader to refer to the corresponding papers for de-
tails. Some abundance estimators assume Poisson rather than Bi-
nomial distribution of counts, which can be considered as a limit-
ing case when the number of tests tends to infinity (i.e., 𝑇 is suffi-
ciently large). The Chao-Bunge estimator, proposed by Chao and
Bunge [28], utilizes the gamma-Poissonmodel in which species are
detected in the sample according to a Poisson process and rates of
the processes follow a gamma distribution. Wang et al. [29] pro-
vided the Poisson-compound Gammamodel with smooth nonpara-
metric maximum likelihood estimation (PCG). The Unconditional
nonparametric maximum likelihood estimator (UNPMLE) was pro-
vided by Norris and Pollock [30]. The Penalized nonparametric
maximum likelihood estimator (PNPMLE) was provided by Wang
et al. [31].

3 METHODOLOGY
Our methodology consisted of the following steps: (1) test subjects
selection (Section 3.1); (2) test suite generation (Section 3.2); and
(3) killable mutants estimation (Section 3.3). After estimating the
killable mutants for each test suite, sampling strategy, and selected
project, we needed ground truth data about killable mutants to as-
sess the estimation accuracy. Since such data was not available, we
(4) manually classified a sample of surviving mutants as killable or
equivalent (Section 3.4).

3.1 Test Subjects Selection
The choice of our test subjects was guided by the following consid-
erations: (1) We consider manual mutant classification as the most
important part of our study; hence, we wanted to ensure that our
classifiers could understand easily what a program fragment does,
thus closely matching real world settings, in which programmers
work on well understood projects. (2) We wanted to reduce the
work involved in setting up our experiments on different comput-
ing infrastructures, thus increasing the reproducibility of our re-
sults. Hence, we focused on large open-source Java projects that do
not depend on external resources (e.g., databases) and are built us-
ing standard tools such as Maven [32]. We found that the libraries
published by Apache Commons [33] met our criteria. In particu-
lar, they are written to an exacting standard and follow common
syntactic and semantic guidelines as in large enterprise projects.
Thus, our classifiers could understand their functioning reason-
ably well after some initial training. At the time we conducted this
study, Apache Commons contained the 41 projects listed in Table 1.
Among those, for our study, we selected only projects that (1) could
be built and tested successfully with minimal effort; (2) completed
mutation analysis successfully; (3) are released more than once;
and (4) are packaged as a single Maven module.

For the sake of clarity, in Table 1 we group the Apache Com-
mons projects into two groups: the first group (top) contains the
21 projects (name, release, and commit hash) that we could build,
test, and analyze successfully; the second group (bottom) contains

Empirical Evaluation of Frequency Based Statistical Models for Estimating Killable Mutants Conference’17, July 2017, Washington, DC, USA

Table 1: List of considered Apache Commons projects

Project Release Commit Hash/Note
commons-beanutils 1.9.4-RC2 32ceb2c925
commons-cli 1.4 f7153c3c10
commons-codec 1.13 beafa49f88
commons-collections 4.4 cab58b3a80
commons-compress 1.18 b95d5cde4c
commons-configuration 2.5 dc00a04783
commons-csv 1.7 a227a1e2fb
commons-dbcp 2.6.0 3e7fca08d3
commons-dbutils 1.7 77faa3caef
commons-digester 3.2 ec75748096
commons-email 1.5 5516c487a5
commons-exec 1.3 0b1c1ff0cb
commons-fileupload 1.4 047f315764
commons-functor 1.0_RC1 62cd20998e
commons-imaging 1.0-alpha1-RC3 6f04ccc2cf
commons-io 2.6-RC3 2ae025fe5c
commons-lang 3.8_RC1 9801e2fb9f
commons-math 3.6_RC2 95a9d35e77
commons-net 3.6 163fe46c01
commons-pool 2.7.0 f4455dcb8a
commons-validator 1.6 c4b93a7275
commons-ognl no releases immature project
commons-geometry no releases immature project
commons-testing no releases immature project
commons-bcel 6.3.1 fail build
commons-vfs 2.4 complex structure
commons-text 1.7 fail build
commons-logging 1.2 fail mutation analysis
commons-jexl v4.0-snapshot.4 failing tests
commons-crypto 1.0.0 failing tests
commons-jcs 2.2.1-RC4 failing tests
commons-chain 1.2 fail mutation analysis
commons-jxpath 1.3 fail mutation analysis
commons-scxml 2.0-M1 fail mutation analysis
commons-rng 1.2 complex structure
commons-rdf 0.5.0 complex structure
commons-proxy 2.0 RC1 fail build
commons-bsf 3.x-with-engines complex structure
commons-weaver 2.0 complex structure
commons-jelly 1.0.1 fail build
commons-jci 1.1 complex structure

the projects (name, release, and rejection note) that we discarded.
Specifically, we discarded 3 projects that had no official release at
the time we conducted this study and 17 projects that have a com-
plex structure, fail to build, do not pass the available tests, or break
mutation analysis even after some effort into fixing them.

Since we required expensive manual mutant classification, we
restricted our analysis to ten largest projects (in terms of project
KLOC) fulfilling our criteria given in Table 1, and their test suite
spectra are given in Table 2.

3.2 Test Suites Generation
The selected test subjects contain unit tests from developers for
application- and domain-specific requirements. Onemay argue that

the mutants killed by ORiginal test suites might be far from ran-
dom as expected by a statistical process. For mitigation, we lever-
aged EvoSuite [16] to generate Random, a test suite that does not
target any specific testing goal, and DynaMOSA, a test suite that
maximizes coverage using the Dynamic Many-Objective Sorting
Algorithm [34]. Consequently, we argue that the former test suite
has the lowest generation bias, whereas the latter might introduce
some bias being not completely random, but still free from manual
bias. For generating both test suites, we followed the best practice
from SBST [35–37], with test generation for 60 seconds each and
test minimization for 300 seconds each.

3.3 Killable Mutants Estimation
We used PIT [14] (v 1.4.9) to generate the mutants and execute test
suites.This resulted in 2.5B test method executions. We configured
PIT to use its default1 mutation operators and the killmatrix option
enabled; however, we noticed that PIT (1) did not always identify
all the mutants covered by the test cases; hence, it did not execute
them; and (2) it did not always report the name of the test methods
killing mutants. For the test execution, we used JUGE [38], which
we extended to address PIT’s limitations and parallelize the test
executions across multiple computing nodes.

After executing the tests, we removed faulty samples related to
invalid and timed-out mutants. To reduce the risk of misclassifying
“slow” mutants as killed, we conservatively granted each unit test
a timeout of 10 seconds. We considered those mutants that PIT
marked as SURVIVED or NOT_COVERED as the surviving mutants.
Sampling units.We estimated the killable mutants on the ten test
subjects using the twelve estimators on each of the test suites. We
first performed estimation using test methods as sampling units.
That is, each mutant kill by a test method was counted separately.
Next, we evaluated the same using test classes as sampling units,
i.e., we counted mutant kills by each test class.

3.4 Manual Mutants Classification
Running PIT on the ORiginal test suites left thousands of surviv-
ing mutants. Since we could not exhaustively classify all of those
in a reasonable time, we randomly sampled 100 survived mutants
for each project and used those for the manual classification. We
argue that classifying so many mutants is a good balance between
classification effort (estimated to be between one and thirty min-
utes per mutant) and representativeness of the obtained results.
Nevertheless, the whole manual classification took six months.2

Given the sampled mutants, we adopted a structured classifi-
cation protocol that involved three classifiers. The lead classifier
(RA) has ten years of experience in programming with Java and is
an expert in mutation analysis. The classifiers RB and RC have ex-
perience in programming (between three and five years), but were
unfamiliar with mutation analysis before the start of this study. To
cope with that, we organized a pilot study for training RB and RC
using commons-csv, the smallest among the selected projects, and
all the 116 mutants that survived its ORiginal test suite.

After the initial training, the classification considered one project
at a time as listed in Table 3 and required researchers RB and RC

1https://pitest.org/quickstart/mutators/
2The manual classification ran between July 2019 and December 2019.

https://pitest.org/quickstart/mutators/

Conference’17, July 2017, Washington, DC, USA Konstantin Kuznetsov, Alessio Gambi, Saikrishna Dhiddi, Julia Hess, and Rahul Gopinath

Table 2: Apache Commons projects — Projects and test suites measures

Project Total ORiginal Random DynaMOSA
Id Name KLOC Mutants Size Stmt Branch Kill Size Stmt Branch Kill Size Stmt Branch Kill
1 commons-net 20 5764 254 33% 28% 28% 1988 48% 35% 32% 3499 51% 42% 35%
2 commons-math 100 47881 6377 92% 84% 76% 11956 74% 61% 77% 17450 79% 68% 18%
3 commons-lang 28 13061 4114 95% 91% 66% 4500 73% 60% 72% 9027 89% 86% 86%
4 commons-io 10 3273 1316 90% 88% 94% 1677 72% 65% 58% 2822 81% 79% 87%
5 commons-imaging 31 11597 563 73% 59% 47% 2974 63% 45% 44% 4935 67% 53% 45%
6 commons-dbcp 14 4230 1409 66% 66% 99% 1026 39% 42% 20% 2970 47% 58% 27%
7 commons-csv 2 635 312 89% 85% 81% 365 78% 63% 60% 647 89% 83% 76%
8 commons-configuration 28 6279 2803 87% 83% 99% 2991 75% 62% 39% 4956 80% 72% 40%
9 commons-compress 24 9566 1047 84% 76% 65% 2610 63% 45% 44% 4306 70% 57% 49%

10 commons-collections 29 8309 25011 86% 81% 75% 3954 67% 59% 57% 5659 74% 69% 93%

Table 3: Manual classification of live mutants.

Id Project Sampled Misclass. EquivalentRB RC
1 commons-net 100 0 4 1
2 commons-math 100 10 0 8
3 commons-lang 100 7 3 12
4 commons-io 100 3 2 5
5 commons-imaging 100 0 2 0
6 commons-dbcp 100 0 0 1
7 commons-csv∗ 116 3 23 9
8 commons-configuration 100 0 2 4
9 commons-compress 100 2 4 1

10 commons-collections 100 3 2 1
∗We used commons-csv as a pilot to train researchers RB and RC.

to classify independently all 100 sampled mutants. Killable mutants
must be accompanied by a (hypothetical) unit test that could show
the difference in behavior between that mutant and the original
program. Similarly, equivalent mutants must be motivated with a
convincing explanation. As a result, for each sampled mutant, we
collected a label (killable or equivalent) along with how confident
the classifier was in the classification (high, medium, low), and
optional comments. Between RB and RC we achieved a Cohen’s
Kappa of 0.48 (moderate agreement).

Finally, we identified conflicting classifications (avg 4.9%) and
let the three classifiers discuss and resolve them. During the discus-
sion, RA acted as themoderatorwhile RB and RC could update their
classifications in light of the discussed arguments. The discussion
continued until the final classification was accepted unanimously.

Given the proportion of killable mutants in a sample, we ob-
tained the population proportion—and thus an estimate of the to-
tal number of killable mutants—with population proportion confi-
dence intervals [39]. The estimates from manual classification are
the 95% confidence intervals based on random sampling.

4 RESULTS
Our study investigated the ability of frequency-based statistical es-
timators to predict the number of killable mutants.

1⃝ What is the accuracy of frequency-based estimators in
predicting killable mutants?

Table 4: Comparison of mean difference (MD) between
method estimators across test subjects—ORiginal test suites

Id Estimator Valid Est. CI Overlaps MD (%) Stdev (%)
1 ICE-k0 4 0 5.78 6.52
2 Zelterman 6 1 13.48 14.06
3 Chao-Bunge 6 1 9.77 11.03
4 Jackknife 6 0 15.03 9.21
5 Chao 8 1 18.19 16.47
6 iChao 7 1 18.59 15.05
7 ICE 8 1 19.22 16.7
8 ICE-1 8 2 15.16 12.67
9 UNPMLE 6 2 13.28 11.0

10 Bootstrap 9 0 19.76 20.51
11 PNPMLE 5 1 17.31 11.84
12 PCG 6 3 9.14 10.52

To answer this question, we compared the twelve statistical esti-
mators against the corresponding manual classification estimates
(see Section 3.4). We considered estimates computed for the ORigi-
nal test suite using testmethods as sampling unit.We first checked
whether the statistical estimators are significantly different from
the manual classification estimates, i.e., their 95% confidence inter-
vals do not overlap. Next, we computed the mean absolute percent-
age difference (MD) between the point estimates of the statistical
estimators (𝐸) and themanual classification (𝐸𝑀) as: 1

𝑚

∑
𝑖
|𝐸𝑖−𝐸𝑀

𝑖 |
𝑆𝑖

×
100%.We removed any invalid estimate before computingMD, gain-
ing𝑚 valid estimates. We consider invalid any estimate that failed
to compute, resulted in negative point estimate or a value higher
than the total number of possible mutants. We report the counts of
valid estimates (column Valid Estimates) , the mean difference MD,
and the standard deviation of the difference Stdev in Table 4.
2⃝Are frequency-based estimators affected by sampling strate-

gies in mutation analysis?

To answer this question, we follow the same approach adopted
to answer 1⃝. However, for this research question we compared
the estimates from the manual classification also against those ob-
tained by the twelve statistical estimators for Random (Table 5)
and DynaMOSA (Table 6).
3⃝Are frequency-based estimators affected by sampling units

in mutation analysis?

Empirical Evaluation of Frequency Based Statistical Models for Estimating Killable Mutants Conference’17, July 2017, Washington, DC, USA

Table 5: Comparison of mean difference (MD) between
method estimators across subjects—Random test suites

Id Estimator Valid Est. CI Overlaps MD (%) Stdev (%)
1 ICE-k0 2 1 19.51 21.08
2 Zelterman 8 1 36.33 19.32
3 Chao-Bunge 8 1 30.95 17.16
4 Jackknife 8 0 34.28 19.55
5 Chao 9 1 39.42 20.82
6 iChao 9 0 37.42 20.63
7 ICE 9 1 37.79 20.41
8 ICE-1 8 0 38.12 17.22
9 UNPMLE 8 2 39.9 17.42

10 Bootstrap 10 2 36.53 23.15
11 PNPMLE 9 1 35.45 20.76
12 PCG 9 2 35.17 22.03

Table 6: Comparison of mean difference (MD) between
method estimators across subjects—DynaMOSA test suites

Id Estimator Valid Est. CI Overlaps MD (%) Stdev (%)
1 ICE-k0 1 1 5.54 -
2 Zelterman 6 0 49.86 12.08
3 Chao-Bunge 8 1 39.83 23.29
4 Jackknife 7 1 36.58 22.31
5 Chao 8 1 43.54 25.27
6 iChao 8 0 42.15 24.45
7 ICE 8 1 43.67 25.09
8 ICE-1 8 1 41.92 24.36
9 UNPMLE 6 2 39.16 29.03

10 Bootstrap 7 0 49.66 20.85
11 PNPMLE 7 1 37.72 19.16
12 PCG 6 0 32.21 26.21

To answer this question, we compared the estimations of the twelve
statistical estimators using test methods as sampling unit against
the corresponding estimations using test classes as sampling unit
for all test suites. The comparison between class and method esti-
mators for ORiginal is given in Table 7. That for Random is given
in Table 8, and for DynaMOSA is given in Table 9.

Table 7: Comparison of mean difference (MD) between class
and method estimators across subjects—between ORiginal
test suites

Id Estimator Valid Est. CI Overlaps MD (%) Stdev (%)
1 ICE-k0 4 2 2.87 3.17
2 Zelterman 5 4 8.4 16.32
3 Chao-Bunge 4 2 2.15 4.19
4 Jackknife 3 0 4.14 6.42
5 Chao 5 2 10.66 16.86
6 iChao 4 2 4.55 5.27
7 ICE 4 1 4.56 5.63
8 ICE-1 4 1 6.06 7.78
9 UNPMLE 3 0 4.19 5.23

10 Bootstrap 5 3 5.71 2.73
11 PNPMLE 0 - - -
12 PCG 1 0 2.03 -

Table 8: Comparison of mean difference (MD) between class
and method estimators across subjects—between Random
test suites

Id Estimator Valid Est. CI Overlaps MD (%) Stdev (%)
1 ICE-k0 2 2 3.29 2.74
2 Zelterman 5 1 33.82 19.44
3 Chao-Bunge 1 0 26.3 -
4 Jackknife 3 0 36.82 15.25
5 Chao 6 0 28.66 15.8
6 iChao 5 0 30.06 13.52
7 ICE 5 0 23.69 10.54
8 ICE-1 2 0 31.15 10.81
9 UNPMLE 2 0 36.67 27.71

10 Bootstrap 9 5 6.79 2.71
11 PNPMLE 1 0 56.16 -
12 PCG 2 1 28.42 37.91

Table 9: Comparison of mean difference (MD) between
class and method estimators across subjects—between Dy-
naMOSA test suites

Id Estimator Valid Est. CI Overlaps MD (%) Stdev (%)
1 ICE-k0 0 - - -
2 Zelterman 2 0 22.0 0.85
3 Chao-Bunge 2 0 23.83 21.74
4 Jackknife 1 0 32.77 -
5 Chao 4 0 22.16 13.47
6 iChao 4 0 26.47 15.11
7 ICE 4 1 22.19 16.63
8 ICE-1 3 0 23.85 19.12
9 UNPMLE 0 - - -

10 Bootstrap 6 1 7.11 2.76
11 PNPMLE 1 0 58.84 -
12 PCG 0 - - -

5 DISCUSSION
We next discuss each of the research questions and corresponding
observations in depth.
1⃝ What is the accuracy of frequency-based estimators in

predicting killable mutants?
Inspecting Table 4, we can observe that (i) none of the twelve

frequency-based estimators generated a valid estimate (VE) for all
the test subjects (VE ∈ [4, 9]); (ii) in most of the cases (11/12), the
estimates were significantly different than manual estimates (CI
Overlaps ≤ 3), and (iii) their mean difference showed extreme vari-
ability (MD ∈ (5.78 ± 6.52, 19.76 ± 20.51)).

To better interpret the results in Table 4, we plot the results
for Chao estimator (the estimator suggested by the STADS frame-
work) in Figure 3a. In the figure, the x-axis represents the ratio of
mutants, with 1.0 (bold solid line) indicating the complete set of
generated mutants. The y-axis, instead, lists all the test subjects.
For each test subject, the figure shows the ratio of killed mutants
(black dotted line), the estimate and the 95% CI of the manual es-
timate of killable mutants (purple band), and the estimate and the
95% CI produced by Chao using the test methods (blue square) as

Conference’17, July 2017, Washington, DC, USA Konstantin Kuznetsov, Alessio Gambi, Saikrishna Dhiddi, Julia Hess, and Rahul Gopinath

sampling unit. For completeness, the figure also reports the esti-
mates produced by Chao using test classes (red circle) as sampling
unit. From the figure, it is evident that Chao’s predictions are far
from the manual estimates and their CIs almost never overlap.

Focusing on the best performing statistical estimators (Table 4),
we can also observe that PCG achieved the maximum overlap with
manual estimates; however, its CI overlapped 𝐸𝑀 ’s only in three
out of ten test subjects. Likewise, ICE-k0, which achieved the small-
estmean difference of 5.78 from𝐸𝑀 , and Bootstrap, which achieved
the maximum number (9) of valid estimates, never had any predic-
tion’s CI overlapping the manual estimates’ CI.

In light of these observations, we cannot reliably say if any of
the studied estimators might be useful to developers in practice.

Consequently, we answer 1⃝ as follows:
Despite some positive results, in general the twelve frequency-
based estimators we considered were neither accurate nor reli-
able in predicting killable mutants from the ORiginal test suites
using test method as sampling unit.

2⃝Are frequency-based estimators affected by sampling strate-
gies in mutation analysis?

Frequency-based estimators rely on the data obtained by sampling
campaigns; thus, it is possible that they may not be robust to bias
in sampling, e.g., bias introduced by the developers. To study how
different sampling strategies affect the statistical estimators, we
generated two test suites automatically, i.e., without manual bias:
Random (results in Table 5) and DynaMOSA (results in Table 6).

Comparing the data in tables 4 and 5 reveals that with Ran-
dom (i) the estimators produced more valid estimates (97 vs. 79);
(ii) the number of overlaps between CI from the estimators and
manual classification was comparable (12 vs. 13), although not all
the estimators behaved consistently; and (iii) the mean difference
degraded considerably (+20% on average).

Comparing the data in tables 4 and 6 reveals that the situation
did not improve using DynaMOSA. Although the valid estimates
with DynaMOSA are comparable to those with ORiginal (80 vs.
79), the number of CI overlaps was smaller (9 vs. 13) and the mean
difference was even larger than Random (+24% on average).

As before, we plot the results for Chao estimator with each sam-
pling strategy in Figures 3b and 3c. We also plot the results for
Chao estimator test suite pairs across Figure 4a…Figure 4f along
with the manual estimate.

We expected that using automated test generation strategies
would mitigate manual bias and hence result in better estimates.
Likewise, we expected that using unbiased sampling, i.e., random
search, would produce better results than otherwise. Our expecta-
tions were met only partially.

We expected that if the estimatorswere robust to sampling strate-
gies used, the estimates in each pairs would coincide. However,
we found significant differences between each pair. Sampling kill-
able mutants using Random, the estimators performed better than
with DynaMOSA, confirming that unbiased sampling is benefi-
cial. Moreover, the estimators produced more valid estimates with
Random than any other sampling strategy. However, we also ob-
served that with Random the mean difference, i.e., the precision of
the estimations, drastically worsened compared to ORiginal and

that with DynaMOSA the situation worsened. One possible ex-
planation of these results is that the automatically generated test
suites did not adequately sample the population (see statement and
branch coverage in Table 2). However, our counterargument is that
if the estimators were actually performing as expected, they should
have produced larger confidence interval, hence increasing the ac-
curacy of the predictions, i.e., the number of CI overlaps, at the
expense of their precision, i.e., mean difference. But this was not
the case; therefore, we answer 2⃝ as follows:
The estimation quality is affected by the sampling strategy. For
instance, unbiased sampling improved the reliability of the esti-
mators but reduced their precision. Additionally, no matter the
chosen sampling strategy, none of the estimators showed satis-
factory results.

3⃝Are frequency-based estimators affected by sampling units
in mutation analysis?

2⃝ showed that the estimators are affected by the sampling strat-
egy, i.e., the bias in sampling of killable mutants. 3⃝, instead, fo-
cuses on the granularity at which sampling happens, i.e., the sam-
pling unit. Using the same sampling strategy but different gran-
ularities, i.e., test method and class, we expect estimators to pro-
duce comparable results, as they predict the same quantity. There-
fore, studying this aspect would let us draw conclusions on the es-
timators’ consistency. Moreover, this study could let us discount
the possibility that either the manual classification was incorrect
or the (bad) results achieved in 1⃝ were a statistical fluke—which
would be the case if the estimators from other test generators co-
incide.

From Table 7, Table 8, and Table 9, we observe that the estimates
from method and class level sampling units are significantly differ-
ent. Even Bootstrap, which had the highest (50%) overlap for Ran-
dom, did not produce a significant overlap of CIs between method
and class estimators for other test suites.

This situation is clearly exemplified in Figure 3 for Chao esti-
mator, in which almost all the CIs for the same test subject and
sampling strategy do not overlap.

In light of these results, we answer 3⃝:
The difference between estimates from test method and test class
level estimators is statistically significant for every estimator ex-
amined. Consequently, none of the twelve estimators was robust
against changes in sampling unit.

5.1 Additional Observations
We observe that the plots vary considerably based on the subject in
question. While there are several interesting patterns in the data,
the data we have is insufficient to explore these fully.Therefore, we
will refrain from interpreting these until a larger follow-up study
can be conducted.

5.2 What Does This Mean in Practice?
For an estimator to be useful to the developers, it should be able
to produce estimates that are accurate and precise. Additionally,
the estimators must be reliable, i.e., its ability to produce valid es-
timates should not strongly depend on the project under analysis.

Empirical Evaluation of Frequency Based Statistical Models for Estimating Killable Mutants Conference’17, July 2017, Washington, DC, USA

0.2 0.4 0.6 0.8 1
commons-collections
commons-compress

commons-configuration
commons-csv

commons-dbcp
commons-imaging

commons-io
commons-lang
commons-math
commons-net

(a) ORiginal

0.2 0.4 0.6 0.8 1
commons-collections
commons-compress

commons-configuration
commons-csv

commons-dbcp
commons-imaging

commons-io
commons-lang
commons-math
commons-net

(b) Random

0.2 0.4 0.6 0.8 1
commons-collections
commons-compress

commons-configuration
commons-csv

commons-dbcp
commons-imaging

commons-io
commons-lang
commons-math
commons-net

(c) DynaMOSA

Figure 3: Killable mutants estimated by Chao estimator and manual sampling (i.e., ground truth). Ratio of mutants in x-axis,
with 1.0 indicating all generated mutants. The y-axis lists the projects. The method based estimators are in blue, while class
based estimators are in red.Thepurple band is themanual sampling based estimateCI, with dark purple line the point estimate.
The dotted black line indicates the total ratio of killed mutants, which is the absolute lower-bound. The figure shows how
neither method nor class based estimators overlap with ground truth CI consistently.

0.2 0.4 0.6 0.8 1
commons-collections
commons-compress

commons-configuration
commons-csv

commons-dbcp
commons-imaging

commons-io
commons-lang
commons-math
commons-net

(a) DynaMOSAvs ORiginal (methods)

0.2 0.4 0.6 0.8 1
commons-collections
commons-compress

commons-configuration
commons-csv

commons-dbcp
commons-imaging

commons-io
commons-lang
commons-math
commons-net

(b) DynaMOSAvs Random (methods)

0.2 0.4 0.6 0.8 1
commons-collections
commons-compress

commons-configuration
commons-csv

commons-dbcp
commons-imaging

commons-io
commons-lang
commons-math
commons-net

(c) ORiginalvs Random (methods)

0.2 0.4 0.6 0.8 1
commons-collections
commons-compress

commons-configuration
commons-csv

commons-dbcp
commons-imaging

commons-io
commons-lang
commons-math
commons-net

(d) DynaMOSAvs ORiginal (classes)

0.2 0.4 0.6 0.8 1
commons-collections
commons-compress

commons-configuration
commons-csv

commons-dbcp
commons-imaging

commons-io
commons-lang
commons-math
commons-net

(e) DynaMOSAvs Random (classes)

0.2 0.4 0.6 0.8 1
commons-collections
commons-compress

commons-configuration
commons-csv

commons-dbcp
commons-imaging

commons-io
commons-lang
commons-math
commons-net

(f) ORiginalvs Random (classes)

Figure 4: Comparison of estimates from different test suites with methods (Figure 4a…Figure 4c) and classes (Fig-
ure 4d…Figure 4f) as sampling units for Chao estimator. The ORiginal is green, DynaMOSA is blue, and Random is red. The
figure shows that the estimate CI from none test suites overlaps each other or ground truth consistently.

Wenote that examination of just 100mutants is sufficient to pro-
duce an estimate within 2% of the true value. Assuming that exam-
ining 100 mutants is reasonable, we should expect any equivalent
mutant estimator to do better than this value. However, the fact
that none of the estimators could consistently produce estimates
that are close to the manual estimates suggests that the frequency-
based estimators are not yet ready for use by developers.

To verify that our manual analysis was not the cause of an error,
we also investigated whether the estimators could produce consis-
tent values when estimating the same quantities but using differ-
ent sampling units—method and class. We observed that the esti-
mates produced were inconsistent, i.e., only few CIs overlapped.
This is a cause for concern and points to violated assumptions in
the underlying model, which needs to be investigated further.

While overall, the result of our study is negative, we observe a
glimmer of hope. We note that in Table 8 comparing method and
class sampling units using Random, Bootstrap produced 50% CI
overlaps. Furthermore, the mean difference was 6.79% with a simi-
larly small standard deviation of 2.71%. It is possible that not all the
mutants that can be killed manually may be killable by automatic
test generators due to technical limitations or deficiencies in the
test oracles. Hence, it is possible that Bootstrap estimation is true
to the actual value, albeit with a large amount of uncertainty.

Furthermore, unlike DynaMOSA, Random is unguided in test
generation, which may be a hint as to the better performance of
Bootstrap on Random and points to the need for further study.

Conference’17, July 2017, Washington, DC, USA Konstantin Kuznetsov, Alessio Gambi, Saikrishna Dhiddi, Julia Hess, and Rahul Gopinath

Empirical Strategy Used. This paper uses the quantitative re-
search, including systematic collection of data about different mu-
tants and comparing classifications by different experts, and the
agreement is computed by Cohen’s Kappa.
DataAvailability.Thereplication package [15] contains data about
manual classification ofmutants, test suites, kill matrices, and scripts
to compute and plot estimations.

6 THREATS TO VALIDITY
External Validity. Our study was conducted on a limited num-
ber of programs; hence, our findings may not generalize to other
projects and test suites produced by other means. To reduce this
risk, we selected multiple projects from Apache Commons and
used EvoSuite in two exemplary configurations. Apache Commons
projects are popular, implement different functionalities, and are
comparable to well run industrial projects. EvoSuite, instead, im-
plements standard baselines and well established and effective al-
gorithms that generate test suites with remarkably different fea-
tures. We use a single run of the test generator (randomized) on
our classes. While multiple runs are required for statistical confi-
dence of the results, we note that our approach is similar to the
one adopted by established biometrics studies.
Internal Validity. Automatically generated test suites did not al-
ways achieve high coverage; hence, they can lead to larger uncer-
tainty in the final estimation of equivalent mutants. However, we
note that this situation is similar to the one currently faced by soft-
ware practitioner. Next, our analysis can be subject to bugs, sam-
pling errors, and manual misclassification of mutants as equiva-
lents that might bias our results. We tried to mitigate this risk by
reviewing the code of JUGE and our scripts, cross-checking the re-
sults, and using the largest possible subset of classes for which test
generation succeeded.
Construct Validity. Our mapping of statistical estimators to the
mutation testing domain might not to capture important variables.
We acknowledge this threat.

7 RELATED WORK
Mutation analysis is considered a primary way of evaluating test
quality [1]; thus, mutation score is usually considered as a test
suite adequacy metrics [3–6]. Unfortunately, equivalent mutants
have vexed practitioners from the very beginning [8] and remain
an open issue [40] that affects also residual risk estimation.
Studies focusing on estimating killable or equivalent mu-
tants. Papadakis et al. [41] conducted a study for estimating kil-
lable mutants with numerous subjects. We note that this approach
requires manual classification, however limited, for residual de-
fect estimation. This may not be feasible in many cases where the
testers may not be program experts. Furthermore, evaluating resid-
ual risk may be conducted by people who are not involved in either
testing or development (such as the end-user).

In comparison to themutant classification performed in Papadakis
et al. [41], our study considers larger programs and different test
suites, do not employ selective mutation, whose limits have been
discussed empirically and theoretically [42, 43], and we employ
mechanisms such as conflict identification and resolution, to re-
duce manual classification error proneness.

Vincenzi et al. [44] proposed estimating the (posterior) probabil-
ity that specific mutation operators generate equivalent mutants.
Marsit et al. [45–47] proposed using information theory to mea-
sure the intrinsic redundancy in programs as a proxy for mutants
equivalence. Despite their potential benefits and promising initial
results, none of those methods has been empirically evaluated yet.
Studies conductingmutant classification.A few previous stud-
ies also relied on themanualmutants classification. Acree’s study [48]
involved two competent software engineers experts in mutation
analysis that classified live mutants from four COBOL programs.
Similar to our classification procedure, Acree used manually writ-
ten tests for eliminating a large chuck of mutants; however, dif-
ferently from us, the classifiers had no exposure to the programs
under analysis and focused on small COBOL programs. During
his study, Acree documented various misclassifications (avg. 23%),
suggesting that evenmanual classification has errors.We also found
misclassifications (see Table 3,Misclass. column), but achieved bet-
ter accuracy (less than 5%misclassifications on avg),3 arguably be-
cause we trained the labelers and followed a structured and sys-
tematic classification protocol.

Other studies of note are by Yao et al. [49] on 18 C programs,
and Grün et al. [10] (extended by Schuler et al. [50]) on 7 Java pro-
grams. Both studies involved a single researcher but classified a
different amount of live mutants, 1, 194 Yao et al. and 140 Grün
et al. Yao et al.’s study estimated that 77% of all mutants are kill-
able, while Grün et al.’s reported that 45% of the classified live mu-
tants are equivalent. Unfortunately, none of those studies reported
the misclassification rate. Compared to those studies, our manual
classification required (modulo the number of mutants) the same
amount of time, but involved twice as many researchers. We also
considered real-world, more complex, and arguably more difficult
to evaluate, projects, and a representative set of mutation opera-
tors [42]. Finally, we studied manually written and automatically
generated unit test suites, that covered more mutants and estimat-
ing a higher number (generally > 90%) of killable mutants.

We used statistical estimators for predicting killable mutants,
others, instead, used them for estimating residual faults. For in-
stance, Böhme [13] argued to use the same species richness es-
timators we studied for estimating residual defect density, while
Nayak [51] and Voas andMcGraw [52] modeled faults and residual
defects as members of unknown populations and estimated their
number via capture-recapture methods. Tohma et al. [53], instead,
modeled the distribution of observed faults as hyper-geometric dis-
tribution to estimate the number of residual defects.

8 CONCLUSIONS AND FUTURE WORK
Estimating the number of killable mutants is crucial for estimating
the residual risk and the effectiveness of test generators. While a
sound and complete classifier for killable and equivalent mutants
is impossible, recent advances in statistical estimation using fre-
quency based estimators gave us hope that one could at least esti-
mate the number of killable mutants. Consequently, we organized
the first, large evaluation of these estimators on mutation analysis
spanning several projects and multiple sampling strategies.

3This measure does not consider the results of commons-csv that we used for
training the labelers.

Empirical Evaluation of Frequency Based Statistical Models for Estimating Killable Mutants Conference’17, July 2017, Washington, DC, USA

Unfortunately, the results we achieved show that the considered
statistical estimators applied to the killable mutants estimation are
not ready for prime time, as they did not produce consistent, accu-
rate, or precise estimates.

Nonetheless, our observations pointed out that it may be possi-
ble, with more sophisticated models and more data, to successfully
put statistical estimation in use. However, further study is required
to investigate this aspect.

REFERENCES
[1] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark

Harman. Mutation testing advances: an analysis and survey. In Advances in
Computers, volume 112, pages 275–378. Elsevier, 2019.

[2] Joseph R Horgan and Aditya P Mathur. Software testing and reliability. In
Handbook of software reliability engineering, pages 531–566. 1996.

[3] Murial Daran and Pascale Thévenod-Fosse. Software error analysis: A real case
study involving real faults and mutations. ACM SIGSOFT Software Engineering
Notes, 21(3):158–171, 1996.

[4] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes,
and Gordon Fraser. Are mutants a valid substitute for real faults in software
testing? In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 654–665, 2014.

[5] James H Andrews, Lionel C Briand, and Yvan Labiche. Is mutation an appropri-
ate tool for testing experiments? In Proceedings of the 27th international confer-
ence on Software engineering, pages 402–411, 2005.

[6] James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin. Us-
ing mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering, 32(8):608–624, 2006.

[7] Yue Jia and Mark Harman. An analysis and survey of the development of muta-
tion testing. IEEE transactions on software engineering, 37(5):649–678, 2010.

[8] Timothy A Budd and Dana Angluin. Two notions of correctness and their rela-
tion to testing. Acta informatica, 18(1):31–45, 1982.

[9] A. Jefferson Offutt and W. Michael Craft. Using compiler optimization tech-
niques to detect equivalent mutants. Software Testing, Verification and Reliability,
4(3):131–154, 1994.

[10] Bernhard JM Grün, David Schuler, and Andreas Zeller. The impact of equivalent
mutants. In 2009 International Conference on Software Testing, Verification, and
Validation Workshops, pages 192–199. IEEE, 2009.

[11] Marcel Böhme. Assurances in software testing: A roadmap. CoRR,
abs/1807.10255, 2018.

[12] Anne Chao and Chun-Huo Chiu. Species richness: estimation and comparison.
Wiley StatsRef: statistics reference online, 1:26, 2016.

[13] Marcel Böhme. STADS: Software testing as species discovery. ACM Transactions
on Software Engineering and Methodology, 27(2), 7 2018.

[14] Henry Coles. Pit - real world mutation testing. https://pitest.org.
[15] https://github.com/vrthra/chaos-replication.
[16] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for

object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering, pages
416–419, 2011.

[17] Nicola Accettura, Giovanni Neglia, and Luigi Alfredo Grieco. The capture-
recapture approach for population estimation in computer networks. Computer
Networks, 89:107–122, 2015.

[18] Anne Chao. Nonparametric estimation of the number of classes in a population.
Scandinavian Journal of statistics, pages 265–270, 1984.

[19] Chun-Huo Chiu, Yi-TingWang, Bruno AWalther, and Anne Chao. An improved
nonparametric lower bound of species richness via a modified good–turing fre-
quency formula. Biometrics, 70(3):671–682, 2014.

[20] K. P. Burnham and W. S. Overton. Estimation of the size of a closed population
when capture probabilities vary among animals. Biometrika, 65(3):625–633, 1978.

[21] K. P. Burnham and W. S. Overton. Robust estimation of population size when
capture probabilities vary among animals. Ecology, 60(5):927–936, 1979.

[22] Eric P. Smith andGerald van Belle. Nonparametric estimation of species richness.
Biometrics, 40(1):119–129, 1984.

[23] Joaquín Hortal, Paulo AV Borges, and Clara Gaspar. Evaluating the performance
of species richness estimators: sensitivity to sample grain size. Journal of animal
ecology, 75(1):274–287, 2006.

[24] Anne Chao, SM Lee, and SL Jeng. Estimating population size for capture-
recapture data when capture probabilities vary by time and individual animal.
Biometrics, pages 201–216, 1992.

[25] Shen-Ming Lee and Anne Chao. Estimating population size via sample coverage
for closed capture-recapture models. Biometrics, pages 88–97, 1994.

[26] Nicholas J Gotelli and Anne Chao. Measuring and estimating species richness,
species diversity, and biotic similarity from sampling data. 2013.

[27] Dankmar Böhning. Some general comparative points on chao’s and zelterman’s
estimators of the population size. Scandinavian Journal of Statistics, 37(2):221–
236, 2010.

[28] Anne Chao and John Bunge. Estimating the number of species in a stochastic
abundance model. Biometrics, 58(3):531–539, 2002.

[29] Ji-Ping Wang. Estimating species richness by a poisson-compound gamma
model. Biometrika, 97(3):727–740, 2010.

[30] James L Norris and Kenneth H Pollock. Non-parametric mle for poisson species
abundance models allowing for heterogeneity between species. Environmental
and Ecological Statistics, 5(4):391–402, 1998.

[31] Ji-Ping Z Wang and Bruce G Lindsay. A penalized nonparametric maximum
likelihood approach to species richness estimation. Journal of the American Sta-
tistical Association, 100(471):942–959, 2005.

[32] Apache Software Foundation. Apache Maven. https://maven.apache.org/.
[33] Apache Software Foundation. Apache Commons. http://commons.apache.org/.
[34] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulat-

ing branch coverage as a many-objective optimization problem. In IEEE Inter-
national Conference on Software Testing, Verification and Validation, pages 1–10.
IEEE, 2015.

[35] Xavier Devroey, Sebastiano Panichella, and Alessio Gambi. Java unit testing
tool competition: Eighth round. In ICSE ’20: 42nd International Conference on
Software Engineering, Workshops, Seoul, Republic of Korea, 27 June - 19 July, 2020,
pages 545–548. ACM, 2020.

[36] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo Riccio.
SBST tool competition 2021. In 14th IEEE/ACM InternationalWorkshop on Search-
Based Software Testing, SBST 2021, Madrid, Spain, May 31, 2021, pages 20–27.
IEEE, 2021.

[37] Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti. SBST
tool competition 2022. In 15th IEEE/ACM InternationalWorkshop on Search-Based
Software Testing, SBST@ICSE 2022, Pittsburgh, PA, USA, May 9, 2022, pages 25–32.
IEEE, 2022.

[38] Xavier Devroey, Alessio Gambi, Juan Pablo Galeotti, René Just, FitsumMeshesha
Kifetew, Annibale Panichella, and Sebastiano Panichella. JUGE: an infrastruc-
ture for benchmarking java unit test generators. CoRR, abs/2106.07520, 2021.

[39] R Lyman Ott and Micheal T Longnecker. An introduction to statistical methods
and data analysis. Cengage Learning, 2015.

[40] L. Madeyski, W. Orzeszyna, R. Torkar, andM. Józala. Overcoming the equivalent
mutant problem: A systematic literature review and a comparative experiment
of second order mutation. IEEE Transactions on Software Engineering, 40(1):23–
42, 2014.

[41] Mike Papadakis, Marcio Delamaro, and Yves Le Traon. Mitigating the effects of
equivalent mutants with mutant classification strategies. Science of Computer
Programming, 95:298–319, 2014.

[42] Rahul Gopinath, Iftekhar Ahmed, Mohammad Amin Alipour, Carlos Jensen, and
Alex Groce. Mutation reduction strategies considered harmful. IEEE Transac-
tions on Reliability, 66(3):854–874, 2017.

[43] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.
On the limits of mutation reduction strategies. In Proceedings of the 38th Inter-
national Conference on Software Engineering. ACM, 2016.

[44] Auri Vincenzi, Elisa Nakagawa, José Maldonado, Márcio Delamaro, and Roseli
Romero. Bayesian-learning based guidelines to determine equivalent mu-
tants. International Journal of Software Engineering and Knowledge Engineering,
12:675–689, 12 2002.

[45] Imen Marsit, Mohamed Nazih Omri, and Ali Mili. Estimating the survival rate
of mutants. In ICSOFT, 2017.

[46] Imen Marsit, Mohamed Nazih Omri, JiMing Loh, and Ali Mili. Impact of muta-
tion operators on mutant equivalence. In ICSOFT, pages 55–66, 2018.

[47] A. Ayad, I. Marsit, J. Loh, M. N. Omri, and A. Mili. Estimating the number of
equivalent mutants. In 2019 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pages 112–121, 2019.

[48] Allen Troy Acree Jr. On Mutation. PhD thesis, Georgia Institute of Technology,
Atlanta, Georgia, 1980. GIT-ICS-80/12.

[49] Xiangjuan Yao, Mark Harman, and Yue Jia. A study of equivalent and stubborn
mutation operators using human analysis of equivalence. In Proceedings of the
36th International Conference on Software Engineering, pages 919–930, 2014.

[50] David Schuler and Andreas Zeller. (un-) covering equivalent mutants. In 2010
Third International Conference on Software Testing, Verification and Validation,
pages 45–54. IEEE, 2010.

[51] Tapan Nayak. Estimating population size by recapture sampling. Biometrika, 75,
03 1988.

[52] JeffreyM. Voas and GaryMcGraw. Software Fault Injection: Inoculating Programs
against Errors. John Wiley & Sons, Inc., USA, 1997.

[53] Yoshihiro Tohma, Kenshin Tokunaga, Shinji Nagase, and YukihisaMurata. Struc-
tural approach to the estimation of the number of residual software faults based
on the hyper-geometric distribution. IEEE transactions on software engineering,
15(3):345–355, 1989.

https://pitest.org
https://github.com/vrthra/chaos-replication
https://maven.apache.org/
http://commons.apache.org/

	Abstract
	1 Introduction
	2 Statistical Framework
	2.1 The Urn Probabilistic Model
	2.2 Frequency-Based Estimators

	3 Methodology
	3.1 Test Subjects Selection
	3.2 Test Suites Generation
	3.3 Killable Mutants Estimation
	3.4 Manual Mutants Classification

	4 Results
	5 Discussion
	5.1 Additional Observations
	5.2 What Does This Mean in Practice?

	6 Threats to Validity
	7 Related Work
	8 Conclusions and Future Work
	References

